Topic Course on Probabilistic Methods
(Week 5)
Lovász Local Lemma

Linyuan Lu
University of South Carolina

University of South Carolina, Fall, 2012
Selected topics

- Linearity of Expectation (2 weeks)
- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviations (1-2 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)
The second moment method

- Lovász Local Lemma
- Property B
- \(k \)-coloring of \(\mathbb{R} \)
- Ramsey numbers \(R(k, k) \)
- Ramsey numbers \(R(3, k) \)
- Directed cycles
- Linear Arboricity
Lovász Local Lemma

- A_1, A_2, \ldots, A_n: n events in an arbitrary probability spaces.
Lovász Local Lemma

- \(A_1, A_2, \ldots, A_n \): \(n \) events in an arbitrary probability spaces.
- A dependency digraph \(D = (V, E) \): if for each \(A_i, A_i \) is mutually independent to all the events \(\{A_j : A_i A_j \notin E\} \).

Lovász Local Lemma, general case: If there are real number \(x_1, \ldots, x_n \) such that \(0 \leq x_i < 1 \) and
\[
\Pr(A_i) \leq x_i \prod_{(i,j) \in E} (1 - x_j)
\]
for all \(1 \leq i \leq n \). Then
\[
\Pr \left(\bigwedge_{i=1}^{n} \bar{A}_i \right) \geq \prod_{i=1}^{n} (1 - x_i) > 0.
\]
Proof: Inductively prove that for any $S \subset [n]$, $|S| = s < n$, $i \notin S$,

$$\Pr \left[A_i \mid \bigwedge_{j \in S} \bar{A}_j \right] \leq x_i.$$
Proof: Inductively prove that for any $S \subset [n]$, $|S| = s < n$, $i \not\in S$,

$$\Pr \left[A_i \mid \bigwedge_{j \in S} \overline{A}_j \right] \leq x_i.$$

Trivial for $s = 0$. Assuming it for all $s' < s$, we prove it for s.
Proof: Inductively prove that for any \(S \subset [n], |S| = s < n,\) \(i \notin S,\)

\[
\Pr \left[A_i \mid \land_{j \in S} \bar{A}_j \right] \leq x_i.
\]

Trivial for \(s = 0.\) Assuming it for all \(s' < s,\) we prove it for \(s.\)

Let \(S_1 = \{j \in S: (i, j) \in E(G)\} \) and \(S_2 = S \setminus S_1.\) Then
Proof: Inductively prove that for any $S \subset [n]$, $|S| = s < n$, $i \notin S$,

$$\Pr \left[A_i \mid \bigwedge_{j \in S} \bar{A_j} \right] \leq x_i.$$

Trivial for $s = 0$. Assuming it for all $s' < s$, we prove it for s.

Let $S_1 = \{j \in S: (i, j) \in E(G)\}$ and $S_2 = S \setminus S_1$. Then

$$\Pr \left[A_i \mid \bigwedge_{j \in S} \bar{A_j} \right] = \frac{\Pr \left[A_i \land \left(\bigwedge_{j \in S} \bar{A_j} \right) \mid \bigwedge_{j \in S} \bar{A_j} \right]}{\Pr \left[\bigwedge_{j \in S} \bar{A_j} \mid \bigwedge_{j \in S} \bar{A_j} \right]}$$
Proof: Inductively prove that for any $S \subset [n], \ |S| = s < n$, $i \not\in S$,

$$\Pr \left[A_i \mid \bigwedge_{j\in S} \overline{A}_j \right] \leq x_i.$$

Trivial for $s = 0$. Assuming it for all $s' < s$, we prove it for s. Let $S_1 = \{ j \in S : (i, j) \in E(G) \}$ and $S_2 = S \setminus S_1$. Then

$$\Pr \left[A_i \mid \bigwedge_{j\in S} \overline{A}_j \right] = \frac{\Pr \left[A_i \wedge \left(\bigwedge_{j\in S} \overline{A}_j \right) \mid \bigwedge_{j\in S} \overline{A}_j \right]}{\Pr \left[\bigwedge_{j\in S} \overline{A}_j \mid \bigwedge_{j\in S} \overline{A}_j \right]}$$

$$\Pr \left[A_i \wedge \left(\bigwedge_{j\in S} \overline{A}_j \right) \mid \bigwedge_{j\in S} \overline{A}_j \right] \leq \Pr \left[A_i \mid \bigwedge_{j\in S} \overline{A}_j \right]$$

$$= \Pr[A_i] \leq x_i \prod_{(i,j) \in E(G)} (1 - x_j).$$
Write \(S_1 = \{j_1, j_2, \ldots, j_r\} \).

\[
\Pr \left[\bigwedge_{j \in S} \bar{A}_j \mid \bigwedge_{j \in S} \bar{A}_j \right] \\
= \prod_{l=1}^{r} \left(1 - \Pr \left[A_{j_l} \mid \bar{A}_{j_{l+1}} \land \cdots \land A_{j_r} \land j \in S \bar{A}_j \right] \right) \\
\geq \prod_{l=1}^{r} (1 - x_{j_l}) \\
\geq \prod_{(i,j) \in E(G)} (1 - x_j).
\]

Thus,
\[
\Pr \left[A_i \mid \bigwedge_{j \in S} \bar{A}_j \right] \leq x_i.
\]
\[
\Pr \left[\bigwedge_{i=1}^{n} \bar{A}_i \right] = (1 - \Pr[A_1])(1 - \Pr[A_2|\bar{A}_1]) \cdots \\
\cdots (1 - \Pr[A_n|\bigwedge_{i=1}^{n-1} \bar{A}_i]) \\
\geq \prod_{i=1}^{n} (1 - x_i).
\]

The proof is finished.}\]

\[\square\]
Lovász Local Lemma, symmetric case: Let A_1, A_2, \ldots, A_n be events in an arbitrary probability space. Suppose that each event A_i is mutually independent of a set of all the other event A_j but at most d, and that $\Pr(A_i) \leq p$ for all $1 \leq i \leq n$. If $ep(d + 1) < 1$, then $\Pr(\bigwedge_{i=1}^{n} \overline{A_i}) > 0$.

Symmetric Case
Theorem: Let $H = (V, E)$ be a hypergraph in which every edge has at least k elements, and suppose that each edge of H intersects at most d other edges. If $e(d + 1) \leq 2^{k-1}$, then H has property B.
Theorem: Let $H = (V, E)$ be a hypergraph in which every edge has at least k elements, and suppose that each edge of H intersects at most d other edges. If $e(d + 1) \leq 2^{k-1}$, then H has property B.

Proof: Color each vertex in two colors randomly and independently. For each edge $f \in E$, let A_f be the event that f is monochromatic. Then

$$\Pr(A_f) = 2^{1-|f|} \leq 2^{1-k}.$$

A_f is independent to all event but at most d. Aply LLL. □
Let \(c : \mathbb{R} \to \{1, 2, \ldots, k\} \) be a \(k \)-coloring of \(\mathbb{R} \). A set \(T \subset \mathbb{R} \) is **multicolored** if \(c(T) = \{1, 2, \ldots, k\} \).
Let $c: \mathbb{R} \rightarrow \{1, 2, \ldots, k\}$ be a k-coloring of \mathbb{R}. A set $T \subset \mathbb{R}$ is **multicolored** if $c(T) = \{1, 2, \ldots, k\}$.

Theorem: Let m and k be two positive integers satisfying
\[
e^m e^k \left(m - 1 \right) + 1 \leq 1.
\]

Then, for any set S of m real numbers there is a k-coloring so that each translation $x + S$ (for $x \in \mathbb{R}$) is multicolored.
k-coloring of \mathbb{R}

Let $c: \mathbb{R} \to \{1, 2, \ldots, k\}$ be a k-coloring of \mathbb{R}. A set $T \subset \mathbb{R}$ is **multicolored** if $c(T) = \{1, 2, \ldots, k\}$.

Theorem: Let m and k be two positive integers satisfying

$$e(m(m - 1) + 1)k(1 - \frac{1}{k})^m \leq 1.$$

Then, for any set S of m real numbers there is a k-coloring so that each translation $x + S$ (for $x \in \mathbb{R}$) is multicolored. The condition is satisfied if $m \geq (3 + o(1))k \log k$.
First we use LLL to prove “For any finite set $X \subset \mathbb{R}$, there is a k-coloring so that $x + S$ (for all $x \in X$) is multi-colored.”
Proof

First we use LLL to prove “For any finite set $X \subset \mathbb{R}$, there is a k-coloring so that $x + S$ (for all $x \in X$) is multi-colored.”

Let $Y = \bigcup_{x \in X} (x + S)$. Color numbers in Y in k-colors randomly and independently. Let A_x be the event that $x + S$ is not multi-colored.

$$\Pr(A_x) \leq k(1 - \frac{1}{k})^{m-1}.$$
Proof

First we use LLL to prove “For any finite set $X \subset \mathbb{R}$, there is a k-coloring so that $x + S$ (for all $x \in X$) is multi-colored.”

Let $Y = \bigcup_{x \in X} (x + S)$. Color numbers in Y in k-colors randomly and independently. Let A_x be the event that $x + S$ is not multi-colored.

$$\Pr(A_x) \leq k \left(1 - \frac{1}{k}\right)^{m-1}.$$

A_x depends on A_y if $(x + S) \cap (y + S) \neq \emptyset$. Equivalently, $y - x \in S - S$. There are at most $m(m - 1)$ such events.

$$d \leq m(m - 1).$$
Applying LLL, we get

\[\Pr(\land_{x \in X} \bar{A}_x) > 0. \]

Then by Tikhonov’s theorem, \([k]^{\mathbb{R}}\) is compact. For any \(x \in \mathbb{R}\), let

\[C_x = \{ c \in [k]^{\mathbb{R}} : x + S \text{ is multi-colored} \}. \]
Applying LLL, we get

\[\Pr(\bigwedge_{x \in X} \bar{A}_x) > 0. \]

Then by Tikhonov’s theorem, \([k]^{\mathbb{R}}\) is compact. For any \(x \in \mathbb{R}\), let

\[C_x = \{ c \in [k]^{\mathbb{R}} : x + S \text{ is multi-colored} \}. \]

Now \(C_x\) is a closed set and \(\bigcap_{x \in X} C_x \neq \emptyset\) for any finite \(X\). Then \(\bigcap_{x \in \mathbb{R}} C_x \neq \emptyset\). \(\square\)
Theorem (Spencer, 1975)

\[R(k, k) \geq (1 + o(1)) \frac{\sqrt{2}}{e} k^{2^{k/2}}. \]
Theorem (Spencer, 1975)

\[R(k, k) \geq (1 + o(1)) \frac{\sqrt{2}}{e} k 2^{k/2}. \]

Theorem (Spencer, 1975)

\[R(3, k) \geq \frac{ck^2}{\log k}. \]
Ramsey numbers

Theorem (Spencer, 1975)

\[R(k, k) \geq (1 + o(1)) \frac{\sqrt{2}}{e} k^{2k/2}. \]

Theorem (Spencer, 1975)

\[R(3, k) \geq \frac{ck^2}{\log k}. \]

Best bounds for \(R(r, k) \) (for fixed \(r \) and \(k \) large),

\[c \left(\frac{k}{\log k} \right)^{(r+1)/2} < R(r, k) < (1 + o(1)) \frac{k^{r-1}}{\log^{r-2} k}. \]
Ramsey numbers

Theorem (Spencer, 1975)

\[R(3, k) \geq \frac{ck^2}{\log k}. \]
Theorem (Spencer, 1975)

\[R(3, k) \geq \frac{ck^2}{\log k}. \]

Proof: Consider \(G(n, p) \). Two bad events:
Ramsey numbers

Theorem (Spencer, 1975)

\[R(3, k) \geq \frac{ck^2}{\log k}. \]

Proof: Consider \(G(n, p) \). Two bad events:

- For \(S \in \binom{[n]}{3} \), let \(A_S \) be the event of \(G|_S \) is a triangle;
 \[\Pr(A_S) = p^3. \]
Ramsey numbers

Theorem (Spencer, 1975)

\[
R(3, k) \geq \frac{ck^2}{\log k}.
\]

Proof: Consider \(G(n, p)\). Two bad events:

- For \(S \in \binom{[n]}{3}\), let \(A_S\) be the event of \(G|_S\) is a triangle; \(\Pr(A_S) = p^3\).

- For \(T \in \binom{[n]}{k}\), let \(B_T\) be the event that \(T\) is an independent set of \(G\); \(\Pr(B_t) = (1 - p)^{\binom{k}{2}}\).
Ramsey numbers

Theorem (Spencer, 1975)

\[R(3, k) \geq \frac{ck^2}{\log k}. \]

Proof: Consider \(G(n, p) \). Two bad events:

- For \(S \in \binom{[n]}{3} \), let \(A_S \) be the event of \(G|_S \) is a triangle; \(\Pr(A_S) = p^3 \).
- For \(T \in \binom{[n]}{k} \), let \(B_T \) be the event that \(T \) is an independent set of \(G \); \(\Pr(B_t) = (1 - p)^{\binom{k}{2}} \).
- Dependence graph: \(d_{SS} \leq 3n \), \(d_{ST} \leq 3\binom{n}{k-2} \), \(d_{TS} \leq \binom{k}{2}n \), and \(d_{TT} \leq \binom{k}{2}\binom{n}{k-2} \).
Proof

By LLL, we only require

\[p^3 \leq x(1 - x)^{3n}(1 - y)^3 \binom{n}{k-2} \]

\[(1 - p)^k \leq y(1 - x)^n(1 - y)^k \binom{k}{k-2}. \]
Proof

By LLL, we only require

\[p^3 \leq x(1 - x)^3n(1 - y)^3\binom{n}{k-2}, \]
\[(1 - p)^\binom{k}{2} \leq y(1 - x)^\binom{k}{2}n(1 - y)^\binom{k}{2}\binom{n}{k-2}. \]

We can choose \(p = c_1n^{-1/2}, k = c_2n^{1/2}\log n, x = c_3n^{-3/2}, \)
and \(y = c_4/\binom{n}{k}. \)
Proof

By LLL, we only require

\[p^3 \leq x(1-x)^{3n}(1-y)^{3\binom{n}{k-2}} \]

\[(1-p)^{\binom{k}{2}} \leq y(1-x)^{\binom{k}{2}n}(1-y)^{\binom{k}{2}\binom{n}{k-2}}. \]

We can choose \(p = c_1 n^{-1/2}, \ k = c_2 n^{1/2} \log n, \ x = c_3 n^{-3/2} \),
and \(y = c_4 / \binom{n}{k} \).

This gives \(R(3, k) > c_5 k^2 / \log^2 k \). \qed
Best bounds for $R(r, k)$ (for fixed r and k large),

$$c \left(\frac{k}{\log k} \right)^{(r+1)/2} < R(r, k) < (1 + o(1)) \frac{k^{r-1}}{\log^{r-2} k}.$$

Erdős conjecture 250: Prove

$$R(4, k) > c' \frac{k^3}{\log^c k}$$

for some constants $c', c > 0$.

$R(4, k)$
Best bounds for $R(r, k)$ (for fixed r and k large),

$$c \left(\frac{k}{\log k} \right)^{(r+1)/2} < R(r, k) < (1 + o(1)) \frac{k^{r-1}}{\log^{r-2} k}.$$

Erdős conjecture $\$250$: Prove

$$R(4, k) > c' \frac{k^3}{\log^c k}$$

for some constants $c', c > 0$.

The best lower bound is using LLL; $R(4, k) > c' \frac{k^{2.5}}{\log^{2.5} k}$.
Directed cycles

- $D = (V, E)$: a simple directed graph.
- δ: minimum outdegree.
- Δ: maximum indegree.
Directed cycles

- $D = (V, E)$: a simple directed graph.
- δ: minimum outdegree.
- Δ: maximum indegree.

Theorem [Alon and Linial (1989)] If
$$e(\Delta \delta + 1)(1 - 1/k)^\delta < 1,$$
then D contains a (directed, simple) cycle of length $0 \mod k$.
Directed cycles

- $D = (V, E)$: a simple directed graph.
- δ: minimum outdegree.
- Δ: maximum indegree.

Theorem [Alon and Linial (1989)] If $\varepsilon(\Delta \delta + 1)(1 - 1/k)^\delta < 1$, then D contains a (directed, simple) cycle of length $0 \mod k$.

Proof: First we can assume every out-degree is δ by deleting some edges if necessary. Consider $f : V \rightarrow \mathbb{Z}_k$. Bad event A_v: no $u \in \Gamma^+(v)$ with $f(u) = f(v) + 1$.

$$\Pr(A_v) = (1 - 1/k)^\delta.$$
Each event depends on at most $\delta \Delta$ others. Apply LLL. □
Linear Arboricity

- Linear forest: disjoint union of paths.
- Linear arboricity $la(G)$: the minimum number of linear forests, whose union is $E(G)$.
Linear Arboicity

- Linear forest: disjoint union of paths.
- Linear arboricity $la(G)$: the minimum number of linear forests, whose union is $E(G)$.

The Linear Arboicity Conjecture (Akiyama, Exoo, Harary [1981]): For every d-regular graph G,

$$la(G) = \left\lceil \frac{d + 1}{2} \right\rceil.$$
Linear Arboricity

- Linear forest: disjoint union of paths.
- Linear arboricity $\text{la}(G)$: the minimum number of linear forests, whose union is $E(G)$.

The Linear Arboricity Conjecture (Akiyama, Exoo, Harary [1981]): For every d-regular graph G,

$$\text{la}(G) = \left\lceil \frac{d + 1}{2} \right\rceil.$$

If the conjecture is true, then it is tight.

$$\text{la}(G) \geq \frac{nd}{2(n - 1)} > \frac{d}{2}.$$
Directed graphs

- $G = (V, E)$: a directed graph.
- G is d-regular if $d^+(v) = d^-(v) = d$ for any vertex v.
- Linear directed forest: disjoint union of directed paths.
- Dilinear arboricity $\text{dla}(G)$: the minimum number of linear directed forests, whose union is $E(G)$.
Directed graphs

- $G = (V, E)$: a directed graph.
- G is d-regular if $d^+(v) = d^-(v) = d$ for any vertex v.
- Linear directed forest: disjoint union of directed paths.
- Dilinear arboricity $dla(G)$: the minimum number of linear directed forests, whose union is $E(G)$.

The Linear Arboricity Conjecture for directed graph (Nakayama, Peroche [1981]): For every d-regular directed graph G, $dla(G) = d + 1$.
Directed graphs

- \(G = (V, E) \): a directed graph.
- \(G \) is \(d \)-regular if \(d^+(v) = d^-(v) = d \) for any vertex \(v \).
- Linear directed forest: disjoint union of directed paths.
- Dilinear arboricity \(\text{dla}(G) \): the minimum number of linear directed forests, whose union is \(E(G) \).

The Linear Arboricity Conjecture for directed graph (Nakayama, Peroche [1981]): For every \(d \)-regular directed graph \(G \), \(\text{dla}(G) = d + 1 \).

DLA conjecture for \(d \) implies LA conjecture for \(2d \).
Proposition: Let $H = (V, E)$ be a graph with maximum degree d, and let $V = V_1 \cup V_2 \cup \cdots \cup V_r$ be a partition of V. If $|V_i| \geq 2ed$, then there is an independent set of vertices W that contains a vertex from each V_i.

A proposition
Proposition: Let $H = (V, E)$ be a graph with maximum degree d, and let $V = V_1 \cup V_2 \cup \cdots \cup V_r$ be a partition of V. If $|V_i| \geq 2ed$, then there is an independent set of vertices W that contains a vertex from each V_i.

Proof: WLOG, we assume

$$|V_1| = |V_2| = \cdots = |V_r| = \lceil 2ed \rceil = g.$$

Pick from each V_i a vertex randomly and independently. Let W be the random set of the vertices picked. For each edge f, let A_f be the event that both ends in W. The maximum degree in the dependence graph is at most $2gd - 1$. We have $e \cdot 2gd \cdot \frac{1}{g^2} = \frac{2ed}{g} < 1$. Apply LLL. □
The directed girth of a digraph is the minimum length of a directed cycle in it.
The directed girth of a digraph is the minimum length of a directed cycle in it.

Theorem Let $G = (U, F)$ be a d-regular digraph with directed girth $g \geq 8ed$. Then

$$\text{dla}(G) = d + 1.$$
The directed girth of a digraph is the minimum length of a directed cycle in it.

Theorem Let $G = (U, F)$ be a d-regular digraph with directed girth $g \geq 8ed$. Then

$$\text{dla}(G) = d + 1.$$

Proof: Using Hall’s matching theorem, we can partition F into d pairwise disjoint 1-regular spanning subgraphs F_1, \ldots, F_d of G.
Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$
Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$

By the girth condition, $|V_i| \geq 8ed$.
Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$

By the girth condition, $|V_i| \geq 8ed$.

Apply the proposition to the line-graph H of G. Note H is $4d - 2$-regular.
Each F_i is a union of vertex disjoint directed cycles. Let V_1, \ldots, V_r are the sets of edges of all cycles. Then

$$F = V_1 \cup \cdots \cup V_r.$$

By the girth condition, $|V_i| \geq 8ed$.

Apply the proposition to the line-graph H of G. Note H is $4d - 2$-regular.

There exists an independent set M_1 of H. Now $M_1, F_1 \setminus M_1, \ldots, F_d \setminus M_1$ forms $d + 1$ linear directed forests. □
Theorem [Alon 1988] There is an absolute constant $c > 0$ such that for every d-regular directed graph G

$$\text{dla}(G) \leq d + cd^{3/4} \log^{1/2} d.$$
General d-regular graphs

Theorem [Alon 1988] There is an absolute constant $c > 0$ such that for every d-regular directed graph G

$$\text{dla}(G) \leq d + cd^{3/4} \log^{1/2} d.$$

Corollary There is an absolute constant $c > 0$ such that for every d-regular graph G

$$\text{dla}(G) \leq \frac{d}{2} + cd^{3/4} \log^{1/2} d.$$
Theorem [Alon 1988] There is an absolute constant $c > 0$ such that for every d-regular directed graph G

$$\text{dla}(G) \leq d + cd^{3/4} \log^{1/2} d.$$

Corollary There is an absolute constant $c > 0$ such that for every d-regular graph G

$$\text{dla}(G) \leq \frac{d}{2} + cd^{3/4} \log^{1/2} d.$$

The error terms can be improved to $cd^{2/3} \log^{1/3} d$.

Proof

Pick a prime p. Color each vertex randomly and uniformly into p colors. I.e., consider a random map

$$f : V \rightarrow \mathbb{Z}_p.$$
Proof

Pick a prime p. Color each vertex randomly and uniformly into p colors. I.e., consider a random map

$$ f : V \to \mathbb{Z}_p. $$

Define for $i \in \mathbb{Z}_p$,

$$ E_i = \{ (u, v) \in E : f(v) = f(u) + i \}. $$

Let $G_i = (V, E_i)$ and

- $\Delta_i^+:$ the maximum out-degree of G_i.
- $\Delta_i^-:$ the maximum in-degree of G_i.
- $\Delta_i:$ the maximum of Δ_i^+ and Δ_i^-.
There exists a f satisfying

- All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3\sqrt{d/p}\sqrt{\log d}$.
There exists a f satisfying

- All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3\sqrt{d/p}\sqrt{\log d}$.
- G_i has large girth $\geq p$ for $i \neq 0$.

There exists a f satisfying

- All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3\sqrt{d/p}\sqrt{\log d}$.
- G_i has large girth $\geq p$ for $i \neq 0$.
- All G_i can be completed to a Δ_i-regular directed graph without decreasing the girth.
There exists a f satisfying

- All G_i are almost regular: $\Delta_i \leq \frac{d}{p} + 3 \sqrt{\frac{d}{p} \log d}$.
- G_i has large girth $\geq p$ for $i \neq 0$.
- All G_i can be completed to a Δ_i-regular directed graph without decreasing the girth.

$$\text{dla}(G) \leq 2\Delta_0 + \sum_{i=1}^{p-1} (\Delta_i + 1) \leq d + \frac{d}{p} + p + C \sqrt{dp \log d}.$$

Now choose $p \sim d^{1/2}$.