Topic Course on Probabilistic Methods
(Week 2)
Linearity of Expectation (2)

Linyuan Lu

University of South Carolina
Introduction

Selected topics

- Linearity of Expectation (2 weeks)
- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviations (1-2 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)
Linearity of Expectation (2)

- Disjoint pairs
- \(k \)-sets
- Balancing vectors
- Unbalancing lights
- Brégman’s Theorem
- Hamilton paths
- Independence number
- Turán Theorem
Disjoint pairs

- $\mathcal{F} \subseteq 2^{[n]}$.
- $d(\mathcal{F}) := |\{(F, F') : F, F' \in \mathcal{F}, F \cap F' = \emptyset\}|$.

Disjoint pairs

- $\mathcal{F} \subseteq 2^{[n]}$.
- $d(\mathcal{F}) := |\{(F, F') : F, F' \in \mathcal{F}, F \cap F' = \emptyset\}|$.

Daykin and Erdős conjectured if $|\mathcal{F}| = 2^{(1/2+\delta)n}$ then $d(\mathcal{F}) = o(|\mathcal{F}|^2)$.
Disjoint pairs

- $\mathcal{F} \subset 2^{[n]}$.
- $d(\mathcal{F}) := |\{ (F, F') : F, F' \in \mathcal{F}, F \cap F' = \emptyset \}|$.

Daykin and Erdős conjectured if $|\mathcal{F}| = 2^{(1/2+\delta)n}$ then $d(\mathcal{F}) = o(|\mathcal{F}|^2)$.

Theorem [Alon-Frankl, 1985]: If $|\mathcal{F}| = 2^{(1/2+\delta)n}$, then

$$d(\mathcal{F}) < |\mathcal{F}|^{2 - \delta^2/2}.$$
Proof

Let \(m := 2^{(1/2+\delta)n} \). Suppose \(d(\mathcal{F}) < m^{2-\delta^2/2} \).
Proof

Let $m := 2^{(1/2+\delta)n}$. Suppose $d(\mathcal{F}) < m^{2-\delta^2/2}$.

Pick independently t members A_1, A_2, \ldots, A_t of \mathcal{F} with repetitions at random.
Proof

Let \(m := 2^{(1/2+\delta)n} \). Suppose \(d(\mathcal{F}) < m^{2-\delta^2/2} \).

Pick independently \(t \) members \(A_1, A_2, \ldots, A_t \) of \(\mathcal{F} \) with repetitions at random.

\[
\Pr(| \bigcup_{i=1}^{t} A_i | \leq \frac{n}{2}) \\
\leq \sum_{|S| = \frac{n}{2}} \Pr(\bigwedge_{i=1}^{t} (A_i \subset S)) \\
\leq 2^n \left(\frac{2^{n/2}}{2^{(1/2+\delta)n}} \right)^t \\
= 2^n(1-\delta t).
\]
Let $v(B) = |\{ A \in \mathcal{F} : B \cap A = \emptyset \}|$. Then

$$
\sum_B v(B) = 2d(\mathcal{F}) \geq 2m^{2-\delta^2/2}.
$$
Let $v(B) = |\{A \in \mathcal{F} : B \cap A = \emptyset\}|$. Then

$$\sum_B v(B) = 2d(\mathcal{F}) \geq 2m^{2-\delta^2/2}.$$

Let Y be a random variable whose value is the number of members $B \in \mathcal{F}$ that is disjoint to all A_i $1 \leq i \leq t$.

continue
Let \(v(B) = |\{A \in \mathcal{F} : B \cap A = \emptyset\}| \). Then

\[
\sum_B v(B) = 2d(\mathcal{F}) \geq 2m^{2-\delta^2/2}.
\]

Let \(Y \) be a random variable whose value is the number of members \(B \in \mathcal{F} \) that is disjoint to all \(A_i \) \(1 \leq i \leq t \). Then

\[
E(|Y|) = \sum_{B \in \mathcal{F}} \left(\frac{v(B)}{m} \right)^t \\
\geq \frac{1}{m^{t-1}} \left(\frac{\sum_B v(B)}{m} \right)^t \\
\geq 2m^{1-t\delta^2/2}.
\]
Since $Y \leq m$, we get

$$\Pr(Y \geq m^{1-t\delta^2/2}) \geq m^{-t\delta^2/2}.$$
Since $Y \leq m$, we get

$$
\Pr(Y \geq m^{1-t\delta^2/2}) \geq m^{-t\delta^2/2}.
$$

Choose $t = \lceil 1 + \frac{1}{\delta} \rceil$. We have $m^{-t\delta^2/2} > 2^n(1-\delta t)$.
Since $Y \leq m$, we get

$$\Pr(Y \geq m^{1-t\delta^2/2}) \geq m^{-t\delta^2/2}.$$

Choose $t = \lceil 1 + \frac{1}{\delta} \rceil$. We have $m^{-t\delta^2/2} > 2^{n(1-\delta t)}$.

Thus, with positive probability, $\left| \bigcup_{i=1}^{t} A_i \right| > \frac{n}{2}$ and $\bigcup_{i=1}^{t} A_i$ is disjoint to more than $2^{n/2}$ members of \mathcal{F}. Contradiction. □
Let X_1, X_2, \ldots, X_n be random variables and

$$X = \sum_{i=1}^{n} c_i X_i.$$

Then

$$\mathbb{E}(X) = \sum_{i=1}^{n} c_i \mathbb{E}(X_i).$$
Let X_1, X_2, \ldots, X_n be random variables and $X = \sum_{i=1}^{n} c_i X_i$. Then

$$E(X) = \sum_{i=1}^{n} c_i E(X_i).$$

Philosophy: There is a point in the probability space for which $X \geq E(X)$ and a point for $X \leq E(X)$.
Theorem: Let \(G = (V, E) \) be a graph with \(n \) vertices and \(m \) edges. Then \(G \) contains a bipartite subgraph with at least \(m/2 \) edges.
Theorem: Let $G = (V, E)$ be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at last $m/2$ edges.

Proof: Consider a random partition $L \cup R$ of V as follows. For each vertex v, put v into L or R with equal probability.
Theorem: Let $G = (V, E)$ be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at least $m/2$ edges.

Proof: Consider a random partition $L \cup R$ of V as follows. For each vertex v, put v into L or R with equal probability.

Let X be the number of crossing edges (from L to R). Let X_{uv} be the indicator variable of the edge uv is crossing.

$$\mathbb{E}(X_{uv}) = \frac{1}{4}.$$
Theorem: Let $G = (V, E)$ be a graph with n vertices and m edges. Then G contains a bipartite subgraph with at last $m/2$ edges.

Proof: Consider a random partition $L \cup R$ of V as follows. For each vertex v, put v into L or R with equal probability. Let X be the number of crossing edges (from L to R). Let X_{uv} be the indicator variable of the edge uv is crossing.

$$E(X_{uv}) = \frac{1}{4}.$$

$$E(X) = \sum_{uv \in E} E(X_{uv}) = \frac{m}{2}.$$
\(k \)-sets

\[V = V_1 \cup V_2 \cup \cdots \cup V_k : \text{a partition of equal parts, where } |V_1| = \cdots = |V_k| = n. \]
k-sets

- $V = V_1 \cup V_2 \cup \cdots \cup V_k$: a partition of equal parts, where $|V_1| = \cdots = |V_k| = n$.
- $h: V^k \to \{-1, 1\}$.
\(k \)-sets

- \(V = V_1 \cup V_2 \cup \cdots \cup V_k \): a partition of equal parts, where \(|V_1| = \cdots = |V_k| = n\).
- \(h: V^k \to \{-1, 1\} \).
- For \(S \subset V \), let \(h(S) = \sum_{F \subset S} h(F) \).
k-sets

- $V = V_1 \cup V_2 \cup \cdots \cup V_k$: a partition of equal parts, where $|V_1| = \cdots = |V_k| = n$.
- $h: V^k \to \{-1, 1\}$.
- For $S \subset V$, let $h(S) = \sum_{F \subset S} h(F)$.
- A k-set F is crossing if it contains precisely one point from each V_i.
\[V = V_1 \cup V_2 \cup \cdots \cup V_k: \text{a partition of equal parts, where} \]
\[|V_1| = \cdots = |V_k| = n. \]

\[h: V^k \rightarrow \{-1, 1\}. \]

For \(S \subset V \), let \(h(S) = \sum_{F \subset S} h(F) \).

A \(k \)-set \(F \) is crossing if it contains precisely one point form each \(V_i \).

Theorem: Suppose \(h(F) = +1 \) for all crossing \(k \)-sets \(F \). Then there is an \(S \subset V \) for which

\[|h(S)| \geq c_k n^k. \]

Here \(c_k > 0 \), independent of \(n \).
Lemma: Let P_k be the set of all homogeneous polynomials $f(p_1, \ldots, p_k)$ of degree k with all coefficients having absolute value at most one and $p_1 p_2 \cdots p_k$ having coefficient one. Then for all $f \in P_k$ there exists $p_1, \ldots, p_k \in [0, 1]$ with

$$|f(p_1, \ldots, p_k)| \geq c_k.$$

Here $c_k > 0$, independent of n.
Lemma: Let P_k be the set of all homogeneous polynomials $f(p_1, \ldots, p_k)$ of degree k with all coefficients have absolute value at most one and $p_1p_2 \cdots p_k$ having coefficient one. Then for all $f \in P_k$ there exists $p_1, \ldots, p_k \in [0, 1]$ with

$$|f(p_1, \ldots, p_k)| \geq c_k.$$

Here $c_k > 0$, independent of n.

Proof: Let $M(f) = \max_{p_1, \ldots, p_k} |f(p_1, \ldots, p_k)|$. Note P_k is compact and M is continuous. M reaches its minimum value c_k at some point f_0. We have

$$c_k = M(f_0) > 0. \quad \square$$
Proof of theorem

Let S be a random set of V by setting

$$\Pr(x \in V) = p_i, \quad x \in V_i.$$
Proof of theorem

Let S be a random set of V by setting

$$\Pr(x \in V) = p_i, \quad x \in V_i.$$

Let

$$X_F = \begin{cases}
 h(F) & \text{if } F \subset S, \\
 0 & \text{otherwise.}
\end{cases}$$
Proof of theorem

Let S be a random set of V by setting

$$\Pr(x \in V) = p_i, \quad x \in V_i.$$

Let

$$X_F = \begin{cases}
 h(F) & \text{if } F \subset S, \\
 0 & \text{otherwise.}
\end{cases}$$

Say F has type (a_1, \ldots, a_k) if $|F \cap V_i| = a_i$, $1 \leq i \leq k$.
Proof of theorem

Let S be a random set of V by setting

$$\Pr(x \in V) = p_i, \quad x \in V_i.$$

Let

$$X_F = \begin{cases}
 h(F) & \text{if } F \subset S, \\
 0 & \text{otherwise.}
\end{cases}$$

Say F has type (a_1, \ldots, a_k) if $|F \cap V_i| = a_i$, $1 \leq i \leq k$. For these F,

$$\mathbb{E}(X_F) = h(F)p_1^{a_1} \cdots p_k^{a_k}.$$
\[
E(X) = \sum_{\sum_{i=1}^{k} a_i = k} p_{1}^{a_{1}} \cdots p_{k}^{a_{k}} \sum_{F \text{ of type } (a_1, \ldots, a_k)} h(F).
\]
\[
E(X) = \sum_{\sum_{i=1}^{k} a_i = k} p_1^{a_1} \cdots p_k^{a_k} \sum F \text{ of type } (a_1, \ldots, a_k) h(F).
\]

Let \(f(p_1, \ldots, p_k) = \frac{1}{n^k} E(X)\). Then \(f \in P_k\).
\[E(X) = \sum_{\sum_{i=1}^{k} a_i = k} p_1^{a_1} \cdots p_k^{a_k} \sum F \text{ of type } (a_1, \ldots, a_k) h(F). \]

Let \(f(p_1, \ldots, p_k) = \frac{1}{n^k} E(X) \). Then \(f \in P_k \).

Now select \(p_1, \ldots, p_k \in [0, 1] \) with \(|f(p_1, \ldots, p_k)| \geq c_k \).
Then \(E(|X|) \geq |E(X)| \geq c_k n^k \).
\[\mathbb{E}(X) = \sum_{\sum_{i=1}^{k} a_i = k} p_1^{a_1} \cdots p_k^{a_k} \sum_{F \text{ of type } (a_1, \ldots, a_k)} h(F). \]

Let \(f(p_1, \ldots, p_k) = \frac{1}{n^k} \mathbb{E}(X) \). Then \(f \in P_k \).

Now select \(p_1, \ldots, p_k \in [0, 1] \) with \(|f(p_1, \ldots, p_k)| \geq c_k \).

Then \(\mathbb{E}(|X|) \geq |\mathbb{E}(X)| \geq c_k n^k \).

There exists a \(S \) such that \(|h(S)| \geq c_k n^k \). \(\square \)
Balancing vectors

Theorem: Let v_1, \ldots, v_n are n unit vector in \mathbb{R}^n. Then there exist $\epsilon_1, \ldots, \epsilon_n = \pm 1$ so that

$$\|\epsilon_1 v_1 + \cdots + \epsilon_n v_n\| \leq \sqrt{n},$$

and also there exist $\epsilon_1, \ldots, \epsilon_n = \pm 1$ so that

$$\|\epsilon_1 v_1 + \cdots + \epsilon_n v_n\| \geq \sqrt{n}.$$
Proof

Let $\epsilon_1, \ldots, \epsilon_n$ be selected uniformly and independently from \{+1, −1\}. Let $X = \|\epsilon_1 v_1 + \cdots + \epsilon_n v_n\|^2$.
Let $\epsilon_1, \ldots, \epsilon_n$ be selected uniformly and independently from $\{+1, -1\}$. Let $X = \|\epsilon_1 v_1 + \cdots + \epsilon_n v_n\|^2$.

$$
E(X) = E\left(\sum_{i,j=1}^{n} \epsilon_i \epsilon_j v_i \cdot v_j \right)
$$

$$
= \sum_{i,j=1}^{n} E(\epsilon_i \epsilon_j) v_i \cdot v_j
$$

$$
= \sum_{i,j=1}^{n} \delta_{ij} v_i \cdot v_j
$$

$$
= \sum_{i=1}^{n} \|v_i\|^2 = n.
$$
Theorem: Let $v_1, \ldots, v_n \in \mathbb{R}^n$, all $\|v_i\| \leq 1$. Let $p_1, p_2, \ldots, p_n \in [0, 1]$ be arbitrary and set $w = p_1 v_1 + p_2 v_2 + \cdots + p_n v_n$. Then there exist $\epsilon_1, \ldots, \epsilon_n \in \{0, 1\}$ so that setting $v = \epsilon_1 v_1 + \cdots + \epsilon_n v_n$,

$$\|w - v\| \leq \frac{\sqrt{n}}{2}.$$
Theorem: Let $v_1, \ldots, v_n \in \mathbb{R}^n$, all $\|v_i\| \leq 1$. Let $p_1, p_2, \ldots, p_n \in [0, 1]$ be arbitrary and set $w = p_1 v_1 + p_2 v_2 + \cdots + p_n v_n$. Then there exist $\epsilon_1, \ldots, \epsilon_n \in \{0, 1\}$ so that setting $v = \epsilon_1 v_1 + \cdots + \epsilon_n v_n$,

$$\|w - v\| \leq \frac{\sqrt{n}}{2}.$$

Hint: Pick ϵ_i independently with

$$\Pr(\epsilon_i = 1) = p_i, \quad \Pr(\epsilon_i = 0) = 1 - p_i.$$

The proof is similar.
Theorem: Let $a_{ij} = \pm 1$ for $1 \leq i, j \leq n$. Then there exist $x_i, y_j = \pm 1, 1 \leq i, j \leq n$ so that

$$\sum_{i,j=1}^{n} a_{ij} x_i y_j \geq \left(\sqrt{\frac{2}{\pi}} + o(1) \right) n^{3/2}.$$
Theorem: Let $a_{ij} = \pm 1$ for $1 \leq i, j \leq n$. Then there exist $x_i, y_j = \pm 1, 1 \leq i, j \leq n$ so that

$$\sum_{i,j=1}^{n} a_{ij} x_i y_j \geq \left(\sqrt{\frac{2}{\pi}} + o(1) \right) n^{3/2}.$$

Proof: Choose $y_j = 1$ or -1 randomly and independently. Let $R_i = \sum_{i=1}^{n} a_{ij} y_j$. Let x_i be the sign of R_i. Then

$$\sum_{i,j=1}^{n} a_{ij} x_i y_j = \sum_{i=1}^{n} |R_i|.$$
Each R_i has the distribution $S_n = \sum_{i=1}^{n} X_i$, where X_i's are independent uniform $\{-1, 1\}$ random variables.
Each R_i has the distribution $S_n = \sum_{i=1}^{n} X_i$, where X_i’s are independent uniform $\{-1, 1\}$ random variables. We have

$$E(|S_n|) = n 2^{1-n} \left(\frac{n-1}{n-1} \right) \left\lfloor \frac{n-1}{2} \right\rfloor$$

$$= \left(\sqrt{\frac{2}{\pi}} + o(1) \right) n^{1/2}.$$
Each R_i has the distribution $S_n = \sum_{i=1}^{n} X_i$, where X_i’s are independent uniform $\{-1, 1\}$ random variables. We have

$$E(|S_n|) = n2^{1-n}\left(\frac{n-1}{\frac{n-1}{2}}\right)$$

$$= \left(\sqrt{\frac{2}{\pi}} + o(1)\right) n^{1/2}.$$

Hence,

$$\sum_{i=1}^{n} E(|R_i|) = \left(\sqrt{\frac{2}{\pi}} + o(1)\right) n^{3/2}.$$
Brégman’s Theorem

- $A = (a_{i,j})$: an $n \times n$ matrix with all $a_{i,j} \in \{0, 1\}$.
Brégman’s Theorem

- \(A = (a_{ij}) \): an \(n \times n \) matrix with all \(a_{i,j} \in \{0, 1\} \).
- \(S \): the set of permutations \(\sigma \in S_n \), with \(a_{i,\sigma(i)} = 1 \) for all \(i \).
Brégman’s Theorem

- \(A = (a_{i,j}) \): an \(n \times n \) matrix with all \(a_{i,j} \in \{0, 1\} \).
- \(S \): the set of permutations \(\sigma \in S_n \), with \(a_{i,\sigma(i)} = 1 \) for all \(i \).
- \(\text{per}(A) = |S| \): the permanent of \(A \).
Brégman’s Theorem

- $A = (a_{i,j})$: an $n \times n$ matrix with all $a_{i,j} \in \{0, 1\}$.
- S: the set of permutations $\sigma \in S_n$, with $a_{i,\sigma(i)} = 1$ for all i.
- $\text{per}(A) = |S|$: the permanent of A.
- r_i: the i-th row sum.
Brégman’s Theorem

- \(A = (a_{ij}) \): an \(n \times n \) matrix with all \(a_{i,j} \in \{0, 1\} \).
- \(S \): the set of permutations \(\sigma \in S_n \), with \(a_{i,\sigma(i)} = 1 \) for all \(i \).
- \(\text{per}(A) = |S| \): the permanent of \(A \).
- \(r_i \): the \(i \)-th row sum.

Brégman’s Theorem (1973): \(\text{per}(A) \leq \prod_{1 \leq i \leq n} (r_i!)^{1/r_i} \).
Proof [Schrijver 1978]

Pick $\sigma \in S$ and $\tau \in S_n$ independently and uniformly.
Pick $\sigma \in S$ and $\tau \in S_n$ independently and uniformly.

- Let $A^{(1)} := A$; and $A^{(i)}$ is the submatrix obtained by deleting row $\tau(i - 1)$ and column $\sigma(\tau(i - 1))$ for $2 \leq i \leq n$.
Pick $\sigma \in S$ and $\tau \in S_n$ independently and uniformly.

- Let $A^{(1)} := A$; and $A^{(i)}$ is the submatrix obtained by deleting row $\tau(i - 1)$ and column $\sigma(\tau(i - 1))$ for $2 \leq i \leq n$.

- $R_{\tau(i)}$: the $\tau(i)$’s row sum of $A^{(i)}$.
Proof [Schrijver 1978]

Pick $\sigma \in S$ and $\tau \in S_n$ independently and uniformly.

- Let $A^{(1)} := A$; and $A^{(i)}$ is the submatrix obtained by deleting row $\tau(i - 1)$ and column $\sigma(\tau(i - 1))$ for $2 \leq i \leq n$.
- $R_{\tau(i)}$: the $\tau(i)$’s row sum of $A^{(i)}$.
- $L = L(\sigma, \tau) := \prod_{i=1}^{n} R_{\tau(i)}$.
Proof [Schrijver 1978]

Pick $\sigma \in S$ and $\tau \in S_n$ independently and uniformly.

- Let $A^{(1)} := A$; and $A^{(i)}$ is the submatrix obtained by deleting row $\tau(i-1)$ and column $\sigma(\tau(i-1))$ for $2 \leq i \leq n$.

- $R_{\tau(i)}$: the $\tau(i)$’s row sum of $A^{(i)}$.

- $L = L(\sigma, \tau) := \prod_{i=1}^{n} R_{\tau(i)}$.

- $G(L) := e^{E(\ln L)} = e^{\sum_{i=1}^{n} E(\ln R_{\tau(i)})}$.

Proof [Schrijver 1978]

Pick $\sigma \in S$ and $\tau \in S_n$ independently and uniformly.

- Let $A^{(1)} := A$; and $A^{(i)}$ is the submatrix obtained by deleting row $\tau(i - 1)$ and column $\sigma(\tau(i - 1))$ for $2 \leq i \leq n$.

- $R_{\tau(i)}$: the $\tau(i)$'s row sum of $A^{(i)}$.

- $L = L(\sigma, \tau) := \prod_{i=1}^{n} R_{\tau(i)}$.

- $G(L) := e^{E(\ln L)} = e^{\sum_{i=1}^{n} E(\ln R_{\tau(i)})}$.

Claim: $\text{per}(A)) \leq G(L)$.
For any fixed τ. Assume $\tau(1) = 1$. By re-ordering, assume
the first row has ones in the first $r := r_1$ columns. For
$1 \leq j \leq r$ let t_j be the permanent of A with the first row
and j-th column removed (i.e., $\sigma(1) = j$). Let
\[
t = \frac{t_1 + \cdots + t_r}{r} = \frac{\text{per}(A)}{r}.
\]
For any fixed τ. Assume $\tau(1) = 1$. By re-ordering, assume the first row has ones in the first $r := r_1$ columns. For $1 \leq j \leq r$ let t_j be the permanent of A with the first row and j-th column removed (i.e., $\sigma(1) = j$). Let

$$t = \frac{t_1 + \cdots + t_r}{r} = \frac{\text{per}(A)}{r}.$$

By induction,

$$G(R_2 \cdots R_n | \sigma(1) = j) \geq t_j.$$

$$G(L) \geq \prod_{j=1}^{r} (rt_j)^{t_j/\text{per}(A)} = r \prod_{j=1}^{r} (t_j)^{t_j/r}.$$
Since \(\left(\prod_{j=1}^{r} t_{j}^{t_{j}} \right)^{\frac{1}{r}} \geq t^{t} \), we have

\[
G(L) \geq r \prod_{j=1}^{r} t_{j}^{t_{j}/rt} \geq r(t^{t})^{1/t} = rt = \text{per}(A).
\]
Since \(\left(\prod_{j=1}^{r} t_{j}^{t \cdot j} \right)^{1/r} \geq t^t \), we have

\[
G(L) \geq r \prod_{j=1}^{r} t_{j}^{t \cdot j / r^t} \geq r(t^t)^{1/t} = rt = \text{per}(A).
\]

Now we calculate \(G[L] \) conditional on a fixed \(\sigma \). By reordering, assume \(\sigma(i) = i \) for all \(i \). Note

\[
G(R_i) = (r_i!)^{1/r_i}.
\]
Since \(\left(\prod_{j=1}^{r} t_{j}^{t_{j}} \right)^{1/r} \geq t^t \), we have

\[
G(L) \geq r \prod_{j=1}^{r} t_{j}^{t_{j}/rt} \geq r(t^t)^{1/t} = rt = \text{per}(A).
\]

Now we calculate \(G[L] \) conditional on a fixed \(\sigma \). By reordering, assume \(\sigma(i) = i \) for all \(i \). Note

\[
G(R_i) = (r_i!)^{1/r_i}.
\]

\[
G(R) = G\left(\prod_{i=1}^{n} R_i \right) = \prod_{i=1}^{n} (r_i!)^{1/r_i}.
\]
Theorem: There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.
Theorem: There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.

Proof: Let X be the number of Hamiltonian paths in a random tournament. Write $X = \sum_{\sigma \in S_n} X_{\sigma}$. Here X_{σ} is the indicator random variable for σ giving a Hamilton path.

$$E(X_{\sigma}) = 2^{-(n-1)}.$$
Theorem: There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.

Proof: Let X be the number of Hamiltonian paths in a random tournament. Write $X = \sum_{\sigma \in S_n} X_\sigma$. Here X_σ is the indicator random variable for σ giving a Hamilton path.

$$E(X_\sigma) = 2^{-(n-1)}.$$

We have

$$E(X) = \sum_{\sigma \in S_n} E(X_\sigma) = n!2^{1-n}.$$

Done! \qed
Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.
Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Szele [1943] proved

\[
\frac{1}{2} \leq \lim_{n \to \infty} \left(\frac{P(n)}{n!} \right)^{1/n} \leq \frac{1}{2^{3/4}}.
\]

He conjecture that $\lim_{n \to \infty} \left(\frac{P(n)}{n!} \right)^{1/n} = \frac{1}{2}$.
Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Szele [1943] proved

$$\frac{1}{2} \leq \lim_{n \to \infty} \left(\frac{P(n)}{n!} \right)^{1/n} \leq \frac{1}{2^{3/4}}. $$

He conjectured that $\lim_{n \to \infty} \left(\frac{P(n)}{n!} \right)^{1/n} = \frac{1}{2}.$

This conjecture was proved by Alon in 1990.
Let $P(n)$ be the maximum possible number of Hamiltonian paths in a tournament on n vertices.

Szele [1943] proved

\[
\frac{1}{2} \leq \lim_{n \to \infty} \left(\frac{P(n)}{n!} \right)^{1/n} \leq \frac{1}{2^{3/4}}.
\]

He conjecture that $\lim_{n \to \infty} \left(\frac{P(n)}{n!} \right)^{1/n} = \frac{1}{2}$.

This conjecture was proved by Alon in 1990.

Theorem [Alon, 1990]: $P(n) \leq cn^{3/2} \frac{n!}{2^{n-1}}$.
Alon’s proof

- $C(T)$: the number of directed Hamiltonian cycles of T.
Alon’s proof

- $C(T)$: the number of directed Hamiltonian cycles of T.
- $F(T)$: the number of spanning graph (of T), whose indegree and outdegree are both 1 at each vertex.
Alon’s proof

- $C(T)$: the number of directed Hamiltonian cycles of T.
- $F(T)$: the number of spanning graph (of T), whose indegree and outdegree are both 1 at each vertex.
- $A_T = (a_{ij})$: the adjacency matrix of T, where $a_{ij} = 1$ if $i \to j$ and 0 otherwise.
Alon’s proof

- \(C(T) \): the number of directed Hamiltonian cycles of \(T \).
- \(F(T) \): the number of spanning graph (of \(T \), whose indegree and outdegree are both 1 at each vertex.
- \(A_T = (a_{ij}) \): the adjacency matrix of \(T \), where \(a_{ij} = 1 \) if \(i \to j \) and 0 otherwise.

\[
F(T) = \text{per}(A_T) \leq \prod_{i=1}^{n} (r_i !)^{1/r_i}.
\]

Here \(r_i \) is \(i \)-th row sum of \(A_T \); \(\sum_{i=1}^{n} r_i = \binom{n}{2} \).
Lemma: For every two integers a, b satisfying $b \geq a + 2 > a \geq 1$, we have

$$\left(\frac{a!}{a} \right)^{1/a} \left(\frac{b!}{b} \right)^{1/b} < \left(\frac{(a + 1)!}{a+1} \right)^{1/(a+1)} \left(\frac{(b - 1)!}{b-1} \right)^{1/(b-1)}.$$
Lemma: For every two integers a, b satisfying $b \geq a + 2 > a \geq 1$, we have

$$(a!)^{1/a}(b!)^{1/b} < ((a + 1)!)^{1/(a+1)}((b - 1)!)^{1/(b-1)}.$$

Proof: Let $f(x) = \frac{(x!)^{1/x}}{{((x+1)!)^{1/(1+x)}}}$. We need to show $f(a) < f(b - 1)$. It suffices to show $f(x - 1) < f(x)$.

$$((x - 1)!)^{1/(x-1)}((x + 1)!)^{1/(1+x)} < (x!)^{2/x}.$$
Lemma: For every two integers a, b satisfying $b \geq a + 2 > a \geq 1$, we have

$$(a!)^{1/a} (b!)^{1/b} < ((a + 1)!)^{1/(a+1)}((b - 1)!)^{1/(b-1)}.$$

Proof: Let $f(x) = \frac{(x!)^{1/x}}{((x+1)!)^{1/(1+x)}}$. We need to show $f(a) < f(b - 1)$. It suffices to show $f(x - 1) < f(x)$.

$$(x - 1)!^{1/(x-1)}((x + 1)!)^{1/(1+x)} < (x!)^{2/x}.$$

Simplifying it, we get $\left(\frac{x^x}{x!}\right)^2 > \left(1 + \frac{1}{x}\right)^{x(x-1)}$.

A convex inequality
Lemma: For every two integers a, b satisfying $b \geq a + 2 > a \geq 1$, we have

$$(a!)^{1/a} (b!)^{1/b} < ((a + 1)!)^{1/(a+1)} ((b - 1)!)^{1/(b-1)}.$$

Proof: Let $f(x) = \frac{(x!)^{1/x}}{((x+1)!)^{1/(1+x)}}$. We need to show $f(a) < f(b-1)$. It suffices to show $f(x - 1) < f(x)$.

$$((x - 1)!)^{1/(x-1)} ((x + 1)!)^{1/(1+x)} < (x!)^{2/x}.$$

Simplifying it, we get $\left(\frac{x^x}{x!}\right)^2 > \left(1 + \frac{1}{x}\right)^{x(x-1)}$.

It can be proved using $x! > \left(\frac{x+1}{2}\right)^x$ for $x \geq 2$. \qed
Observe that $\sum_{i=1}^{n} (r_i!)^{1/r_i}$ achieves the maximum when all r_i’s are almost equal. We get

$$F(T) \leq (1 + o(1)) \frac{\sqrt{\pi}}{\sqrt{2e}} n^{3/2} \frac{(n - 1)!}{2^n}.$$
Proof of theorem

Observe that $\sum_{i=1}^{n} (r_i!)^{1/r_i}$ achieves the maximum when all r_i's are almost equal. We get

$$F(T) \leq (1 + o(1)) \frac{\sqrt{\pi}}{\sqrt{2e}} n^{3/2} \frac{(n-1)!}{2^n}.$$

Construct a new tournament T' for T by adding a new vertex v, where the edges from v to T are oriented randomly and independently. Every Hamiltonian path in T can be extended to a Hamiltonian cycle in T' with probability $\frac{1}{4}$. We have

$$P(T) \leq \frac{1}{4} C(T') = O \left(n^{3/2} \frac{n!}{2^{n-1}} \right).$$
Independence number

$\alpha(G)$: the maximal size of an independent set of a graph G.
Independence number

\(\alpha(G) \): the maximal size of an independent set of a graph \(G \).

Theorem [Caro (1979), Wei(1981)] \(\alpha(G) \geq \sum_{v \in V} \frac{1}{d_v+1} \).
Independence number

\(\alpha(G) \): the maximal size of an independent set of a graph \(G \).

Theorem [Caro (1979), Wei(1981)] \(\alpha(G) \geq \sum_{v \in V} \frac{1}{d_v+1} \).

Proof: Pick a random permutation \(\sigma \) on \(V \). Define

\[
I = \{ v \in V : vw \in E \Rightarrow \sigma(v) < \sigma(w) \}.
\]

Then \(I \) is an independent set.
Independence number

\(\alpha(G) \): the maximal size of an independent set of a graph \(G \).

Theorem [Caro (1979), Wei(1981)] \(\alpha(G) \geq \sum_{v \in V} \frac{1}{d_v + 1} \).

Proof: Pick a random permutation \(\sigma \) on \(V \). Define

\[
I = \{ v \in V : vw \in E \Rightarrow \sigma(v) < \sigma(w) \}.
\]

Then \(I \) is an independent set.

Let \(X_v \) be the indicator random variable for \(v \in I \).

\[
E(X_v) = \Pr(v \in I) = \frac{1}{d_v + 1}.
\]

\[
\alpha(G) \geq E(|I|) = \sum_{v} \frac{1}{d_v + 1}.
\]
Turán number $t(n, H)$: the maximum integer m such that there is a graph on n vertices containing no subgraph H.
Turán Theorem

Turán number $t(n, H)$: the maximum integer m such that there is a graph on n vertices containing no subgraph H.

Turán Theorem: For $n = km + r$ ($0 \leq r < k$),

$$t(n, K_{k+1}) = m^2 \binom{k}{2} + rm(k - 1) + \binom{r}{2}.$$

The equality holds if and only if G is the complete k-partite graph with equitable partitions, denoted by $G_{n,k}$.
For any $k \leq n$, let q, r satisfy $n = kq + r$, $0 \leq r < k$. Let
\[e = r\left(\frac{q+1}{e}\right) + (m - r)\left(\frac{q}{2}\right). \]
For any $k \leq n$, let q, r satisfy $n = kq + r$, $0 \leq r < k$. Let
\[e = r \binom{q+1}{2} + (m - r) \binom{q}{2}. \]

Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \geq k$ and the equality holds if and only if $G = \overline{G}_{n,k}$.
For any \(k \leq n \), let \(q, r \) satisfy \(n = kq + r \), \(0 \leq r < k \). Let
\[
e = r \binom{q+1}{e} + (m - r) \binom{q}{2}.
\]

Dual version of Turán Theorem: If \(G \) has \(n \) vertices and \(e \) edges. Then \(\alpha(G) \geq k \) and the equality holds if and only if \(G = \overline{G}_{n,k} \).

Proof: By Caro-Wei’s theorem, \(\alpha(G) \geq \sum_v \frac{1}{d_v + 1} \).
For any $k \leq n$, let q, r satisfy $n = kq + r$, $0 \leq r < k$. Let

$$e = r\left(\binom{q+1}{e}\right) + (m - r)\binom{q}{2}.$$

Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \geq k$ and the equality holds if and only if $G = \overline{G}_{n,k}$.

Proof: By Caro-Wei’s theorem, $\alpha(G) \geq \sum v \frac{1}{d_v+1}$. The minimum of $\sum v \frac{1}{d_v+1}$ is reached as the d_v as close together as possible.
For any \(k \leq n \), let \(q, r \) satisfy \(n = kq + r, \ 0 \leq r < k \). Let
\[
e = r \left(\frac{q+1}{e} \right) + (m - r) \left(\frac{q}{2} \right).
\]

Dual version of Turán Theorem: If \(G \) has \(n \) vertices and \(e \) edges. Then \(\alpha(G) \geq k \) and the equality holds if and only if \(G = \overline{G}_{n,k} \).

Proof: By Caro-Wei’s theorem, \(\alpha(G) \geq \sum v \frac{1}{d_v + 1} \).

The minimum of \(\sum v \frac{1}{d_v + 1} \) is reached as the \(d_v \) as close together as possible. Since each clique contributes one, we have
\[
\sum_v \frac{1}{d_v + 1} \geq k.
\]
For any $k \leq n$, let q, r satisfy $n = kq + r$, $0 \leq r < k$. Let $e = r\left(\binom{q+1}{e}\right) + \left(m - r\right)\binom{q}{2}$.

Dual version of Turán Theorem: If G has n vertices and e edges. Then $\alpha(G) \geq k$ and the equality holds if and only if $G = \overline{G}_{n,k}$.

Proof: By Caro-Wei’s theorem, $\alpha(G) \geq \sum_v \frac{1}{d_v+1}$. The minimum of $\sum_v \frac{1}{d_v+1}$ is reached as the d_v as close together as possible. Since each clique contributes one, we have

$$\sum_v \frac{1}{d_v + 1} \geq k.$$

When the equality holds, I is a constant. G can not contain an induced P_2. Therefore $G = \overline{G}_{n,k}$.
Mantel (1907): $t(n, K_3) = \left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil$.
- Mantel (1907): \(t(n, K_3) = \left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil. \)

- Turán (1941):
 \[
 t(n, K_k) = |E(G_{n,k-1})| = \left(1 - \frac{1}{k-1} + o(1)\right)\binom{n}{2}.
 \]
Mantel (1907): \(t(n, K_3) = \left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil. \)

Turán (1941):
\[t(n, K_k) = |E(G_{n,k-1})| = (1 - \frac{1}{k-1} + o(1)) \binom{n}{2}. \]

Erdős-Simonovits-Stone (1966): If \(\chi(H) > 2 \), then
\[t(n, H) = (1 - \frac{1}{\chi(H)-1} + o(1)) \binom{n}{2}. \]
- **Mantel (1907):** \(t(n, K_3) = \left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil \).

- **Turán (1941):**
 \[
 t(n, K_k) = |E(G_{n,k-1})| = (1 - \frac{1}{k-1} + o(1))\binom{n}{2}.
 \]

- **Erdős-Simonovits-Stone (1966):** If \(\chi(H) > 2 \), then
 \[
 t(n, H) = (1 - \frac{1}{\chi(H)-1} + o(1))\binom{n}{2}.
 \]

- **Kővári-Sós-Turán (1954):** For \(2 \leq r \leq s \),
 \[
 t(n, K_{r,s}) < cs^{1/r}n^{2-1/r} + O(n).
 \]
Mantel (1907): \(t(n, K_3) = \left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil. \)

Turán (1941): \(t(n, K_k) = |E(G_{n,k-1})| = (1 - \frac{1}{k-1} + o(1))\binom{n}{2}. \)

Erdős-Simonovits-Stone (1966): If \(\chi(H) > 2 \), then \(t(n, H) = (1 - \frac{1}{\chi(H)-1} + o(1))\binom{n}{2}. \)

Kővári-Sós-Turán (1954): For \(2 \leq r \leq s \), \(t(n, K_{r,s}) < cs^{1/r}n^{2-1/r} + O(n). \)

Erdős-Bondy-Simonovits (1963, 1974): \(t(n, C_{2k}) \leq ckn^{1+1/k}. \)
Open conjectures

- **Conjecture:** for $r \geq 4$, $t(K_{r,r}) > cn^{2-1/r}$.
Open conjectures

- **Conjecture:** for $r \geq 4$, $t(K_{r,r}) > cn^{2-1/r}$.

- **Conjecture (100):** If H is a bipartite graph such that every induced subgraph has a vertex of degree $\leq r$, then $t(n, H) = O(n^{2-1/r})$.
Open conjectures

- Conjecture: for $r \geq 4$, $t(K_{r,r}) > cn^{2-1/r}$.

- Conjecture (100): If H is a bipartite graph such that every induced subgraph has a vertex of degree $\leq r$, then $t(n, H) = O(n^{2-1/r})$.

- Conjecture: $t(n, C_{2k}) \geq cn^{1+1/k}$ for $k = 4$ and $k \geq 6$.
Conjecture: for $r \geq 4$, $t(K_{r,r}) > cn^{2-1/r}$.

Conjecture ($\$100$): If H is a bipartite graph such that every induced subgraph has a vertex of degree $\leq r$, then $t(n, H) = O(n^{2-1/r})$.

Conjecture: $t(n, C_{2k}) \geq cn^{1+1/k}$ for $k = 4$ and $k \geq 6$.

Conjecture ($\$250$ for proof and $\$100$ for disproof:) Suppose H is a bipartite graph. Prove or disprove that $t(n, H) = O(n^{3/2})$ if and only if H does not contain a subgraph each vertex of which has degree > 2.