Topic Course on Probabilistic Methods (Week 13)
Discrepancy

Linyuan Lu

University of South Carolina
Selected topics

- Linearity of Expectation (2 weeks)
- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviation inequalities (3 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)
Random graphs

- Discrepancy
- Linear discrepancy
- Hereditary discrepancy
- Lower bound
- The Beck-Fiala Theorem
Discrepancy

- Ω: a finite set.
- $\chi: \Omega \to \{-1, 1\}$.
- For any $A \subset \Omega$, $\chi(A) = \sum_{a \in A} \chi(a)$.
- For $\mathcal{A} \subset 2^\Omega$,

$$
disc(\mathcal{A}, \chi) = \max_{A \in \mathcal{A}} |\chi(A)|;
$$

$$
disc(\mathcal{A}) = \min_{\chi} \text{disc}(\mathcal{A}, \chi).
$$
Discrepancy

- Ω: a finite set.
- $\chi: \Omega \rightarrow \{-1, 1\}$.
- For any $A \subset \Omega$, $\chi(A) = \sum_{a \in A} \chi(a)$.
- For $\mathcal{A} \subset 2^\Omega$,

\[
\text{disc}(\mathcal{A}, \chi) = \max_{A \in \mathcal{A}} |\chi(A)|;
\]
\[
\text{disc}(\mathcal{A}) = \min_{\chi} \text{disc}(\mathcal{A}, \chi).
\]

Geometric meaning: Assume $|\Omega| = m$, $|\mathcal{A}| = n$, and $B = (b_{ij})$ be the $m \times n$ incidence matrix. Let v_1, v_2, \ldots, v_n be the column vector of B. Then
\[
\text{disc}(\mathcal{A}) = \min |\pm v_1 \pm v_2 \pm \cdots \pm v_n|_\infty.
\]
Theorem: Let \mathcal{A} be a family of n subsets of an m-set Ω. Then

$$\text{disc}(\mathcal{A}) \leq \sqrt{2m \ln(2n)}.$$
Theorem: Let \mathcal{A} be a family of n subsets of an m-set Ω. Then

$$\text{disc}(\mathcal{A}) \leq \sqrt{2m \ln(2n)}.$$

Proof: Let $\chi : \Omega \rightarrow \{-1, 1\}$ be random.
Theorem: Let \mathcal{A} be a family of n subsets of an m-set Ω. Then

$$\text{disc}(\mathcal{A}) \leq \sqrt{2m \ln(2n)}.$$

Proof: Let $\chi: \Omega \to \{-1, 1\}$ be random. Let

$$\lambda = \sqrt{2m \ln(2n)}.$$

By Azuma’s inequality, we have

$$\Pr(|\chi(A)| > \lambda) < 2e^{-\lambda^2/(2|A|)} \leq \frac{1}{n}.$$

With positive probability, we have $|\chi(A)| \leq \lambda$ holds for every $A \in \mathcal{A}$. Therefore $\text{disc}(A) \leq \lambda$. \qed
Theorem [Spencer (1985)]: Let \mathcal{A} be a family of n subsets of an n-element set Ω. Then

$$\text{disc}(\mathcal{A}) < K \sqrt{n}.$$
Theorem [Spencer (1985)]: Let \mathcal{A} be a family of n subsets of an n-element set Ω. Then

$$\text{disc}(\mathcal{A}) < K\sqrt{n}.$$

- In his paper, $K = 6$ is proved; here we will prove a weaker version with $K = 11$.
Theorem [Spencer (1985)]: Let \mathcal{A} be a family of n subsets of an n-element set Ω. Then

$$\text{disc}(\mathcal{A}) < K \sqrt{n}.$$

- In his paper, $K = 6$ is proved; here we will prove a weaker version with $K = 11$.
- If \mathcal{A} consists on n sets on m points and $m \leq n$. Then

$$\text{disc}(\mathcal{A}, \chi) < K \sqrt{m} \sqrt{\ln(n/m)}.$$
Basic entropy

Let X be a random variable taking values in some range S. The **binary entropy** of X, denoted by $H(X)$ is defined by

$$H(X) = - \sum_{x \in S} \Pr(X = x) \log_2 \Pr(X = x).$$
Let X be a random variable taking values in some range S. The **binary entropy** of X, denoted by $H(X)$, is defined by

$$H(X) = -\sum_{x \in S} \Pr(X = x) \log_2 \Pr(X = x).$$

Sub-additive property:

$$H(X, Y) \leq H(X) + H(Y).$$

Here (X, Y) is the random variable taking values in $S \times T$ (where T is the range of Y.)
Proof of entropy inequality

Proof:

\[
H(X) + H(Y) - H(X, Y)
\]

\[
= \sum_{i \in S} \sum_{j \in T} \Pr(X = i, Y = j) \log_2 \frac{\Pr(X = i, Y = j)}{\Pr(X = i) \Pr(Y = j)}
\]

\[
= \sum_{i \in S} \sum_{j \in T} \Pr(X = i) \Pr(Y = j) f(z_{ij}),
\]

where \(f(z) = z \log_2 z \) and \(z_{ij} = \frac{\Pr(X = i, Y = j)}{\Pr(X = i) \Pr(Y = j)} \). By the convexity inequality of \(f(z) \), we have

\[
H(X) + H(Y) - H(X, Y) \geq f(1) = 0. \]

□
A map $\chi : \Omega \rightarrow \{-1, 0, 1\}$ is called a **partial coloring**. When $\chi(a) = 0$ we say a is uncolored.

Lemma 13.2.2: Let A be a family of n subsets of an n-set Ω. Then there is a partial coloring χ with at most $10^{-9}n$ points uncolored such that $|\chi(A)| \leq 10\sqrt{n}$ for all $A \in A$.
A map $\chi : \Omega \rightarrow \{-1, 0, 1\}$ is called a **partial coloring**. When $\chi(a) = 0$ we say a is uncolored.

Lemma 13.2.2: Let A be a family of n subsets of an n-set Ω. Then there is a partial coloring χ with at most $10^{-9}n$ points uncolored such that $|\chi(A)| \leq 10\sqrt{n}$ for all $A \in A$.

Proof: Let $A := \{A_1, A_2, \ldots, A_n\}$. Consider a random coloring

$$
\chi : \Omega \rightarrow \{-1, 1\}.
$$

For $1 \leq i \leq n$ define

$$
b_i = \text{nearest integer to } \frac{\chi(A_i)}{20\sqrt{n}}.
$$
By Chernoff’s inequality, we have

\[
\begin{align*}
\Pr(b_i = 0) & > 1 - 2e^{-50}, \\
\Pr(b_i = 1) & = \Pr(b_i = -1) < 2^{-50}, \\
\Pr(b_i = 2) & = \Pr(b_i = -2) < 2^{-450}, \\
& \vdots \\
\Pr(b_i = s) & = \Pr(b_i = -s) < 2^{-50(2s-1)^2}.
\end{align*}
\]
By Chernoff’s inequality, we have

\[
\Pr(b_i = 0) > 1 - 2e^{-50},
\]

\[
\Pr(b_i = 1) = \Pr(b_i = -1) < 2^{-50},
\]

\[
\Pr(b_i = 2) = \Pr(b_i = -2) < 2^{-450},
\]

\[
\vdots
\]

\[
\Pr(b_i = s) = \Pr(b_i = -s) < 2^{-50(2s-1)^2}.
\]

Recall the entropy \(H(b_i) \) is defined as

\[
H(b_i) = \sum_{s=\infty}^{s=-\infty} -\Pr(b_i = s) \log_2 \Pr(b_i = s).
\]
By the subadditive property, we have

\[
H(b_1, b_2, \ldots, b_n) \leq \sum_{i=1}^{n} H(b_i) \leq \epsilon n.
\]

If a random variable Z assumes no value with probability greater than 2^{-t}, then $H(Z) \geq t$. This implies there is a particular n-tuple (s_1, s_2, \ldots, s_n) so that

\[
\Pr((b_1, \ldots, b_n) = (s_1, \ldots, s_n)) \geq 2^{-\epsilon n}.
\]
Since every coloring has equal probability 2^{-n}, there is a set C consisting of at least $2^{(1-\epsilon)n}$ colorings $\chi: \Omega \to \{-1, 1\}$, all having the same value (b_1, b_2, \ldots, b_n).

continue
Since every coloring has equal probability 2^{-n}, there is a set C consisting of at least $2^{(1-\epsilon)n}$ colorings $\chi : \Omega \rightarrow \{-1, 1\}$, all having the same value (b_1, b_2, \ldots, b_n).

Kleitman (1966) proved that if $|C| \geq \sum_{i \leq r} \binom{n}{i}$ with $r \leq n/2$ then C has diameter (of Hamming distance) at least $2r$.
Since every coloring has equal probability 2^{-n}, there is a set \mathcal{C} consisting of at least $2^{(1-\epsilon)n}$ colorings $\chi : \Omega \rightarrow \{-1, 1\}$, all having the same value (b_1, b_2, \ldots, b_n).

Kleitman (1966) proved that if $|\mathcal{C}| \geq \sum_{i \leq r} \binom{n}{i}$ with $r \leq n/2$ then \mathcal{C} has diameter (of Hamming distance) at least $2r$.

Let $r = \alpha n$ and $2^{H(\alpha)} \leq 2^{1-\epsilon}$. Taylor series expansion gives

$$H\left(\frac{1}{2} - x\right) \sim 1 - \frac{2}{\ln 2}x^2.$$

Thus \mathcal{C} has diameter at least $n(1 - 10^{-9})$. Choose $\chi_1, \chi_2 \in \mathcal{C}$ be at the maximal distance. Let $\chi = \frac{\chi_1 - \chi_2}{2}$. Then the partial coloring χ satisfying all requirements.
We will iterate the procedure to color the remaining uncolored points.

Lemma 13.2.3: Let \mathcal{A} be a family of n subsets of an m-set Ω with at most $10^{-40}m$ points uncolored so that

$$\chi(A) < 10\sqrt{m}\sqrt{\ln(n/m)}$$

for all $A \in \mathcal{A}$.
We will iterate the procedure to color the remaining uncolored points.

Lemma 13.2.3: Let \mathcal{A} be a family of n subsets of an m-set Ω with at most $10^{-40}m$ points uncolored so that

$$\chi(A) < 10 \sqrt{m} \sqrt{\ln(n/m)}$$

for all $A \in \mathcal{A}$.

The proof is similar by define

$$b_i = \text{nearest integer to} \frac{\chi(A_i)}{20 \sqrt{m \ln(n/m)}}.$$

The detail is omitted. \qed
Proof: Apply Lemma 13.2.2 to find a partial coloring χ^1 and then apply Lemma 13.2.3 repeatedly on the remaining uncolored points giving χ^2, χ^3, \ldots until all points have been colored. Let $\chi = \sum_{i \geq 1} \chi^i$.
Proof of Theorem

Proof: Apply Lemma 13.2.2 to find a partial coloring χ^1 and then apply Lemma 13.2.3 repeatedly on the remaining uncolored points giving χ^2, χ^3, \ldots until all points have been colored. Let $\chi = \sum_{i \geq 1} \chi^i$. Then

$$|\chi(A)| \leq 10\sqrt{n} + 10\sqrt{10^{-9}n\sqrt{\ln 10^9}}$$

$$+ 10\sqrt{10^{-49}n\sqrt{\ln 10^{49}}} + 10\sqrt{10^{-89}n\sqrt{\ln 10^{89}}}$$

$$\leq 11\sqrt{n}. \quad \square$$
Proof of Theorem

Proof: Apply Lemma 13.2.2 to find a partial coloring χ^1 and then apply Lemma 13.2.3 repeatedly on the remaining uncolored points giving χ^2, χ^3, \ldots until all points have been colored. Let $\chi = \sum_{i \geq 1} \chi^i$. Then

$$|\chi(A)| \leq 10\sqrt{n} + 10\sqrt{10^{-9}n \sqrt{\ln 10^9}} + 10\sqrt{10^{-49}n \sqrt{\ln 10^{49}}} + 10\sqrt{10^{-89}n \sqrt{\ln 10^{89}}} \leq 11\sqrt{n}.$$

The statement of case $r < n$ can be proved similarly.
More points than sets

Suppose $m > n$, $\mathcal{A} = \{A_1, A_2, \ldots, A_n\}$ and $\Omega = [n]$. The linear discrepancy $\text{lindisc}(\mathcal{A})$ is defined by

$$\text{lindisc}(\mathcal{A}) = \max_{p_1, \ldots, p_m \in [0,1]} \min_{\epsilon_1, \ldots, \epsilon_m \in \{0,1\}} \max_{A \in \mathcal{A}} \left| \sum_{i \in A} (\epsilon_i - p_i) \right|.$$
More points than sets

Suppose $m > n$, $\mathcal{A} = \{A_1, A_2, \ldots, A_n\}$ and $\Omega = [n]$. The \textbf{linear discrepancy} $\text{lindisc}(\mathcal{A})$ is defined by

$$\text{lindisc}(\mathcal{A}) = \max_{p_1, \ldots, p_m \in [0,1]} \min_{\epsilon_1, \ldots, \epsilon_m \in \{0,1\}} \max_{A \in \mathcal{A}} \left| \sum_{i \in A} (\epsilon_i - p_i) \right|.$$

Setting all $\epsilon_i = \frac{1}{2}$ and scaling $[0, 1]$ to $[-1, 1]$, we have

$$\text{disc}(A) = \min_{\epsilon'_1, \ldots, \epsilon'_m \in \{-1,1\}} \max_{A \in \mathcal{A}} \left| \sum_{i \in A} \epsilon'_i \right|$$

$$= 2 \min_{\epsilon_1, \ldots, \epsilon_m \in \{0,1\}} \max_{A \in \mathcal{A}} \left| \sum_{i \in A} \epsilon_i - \frac{1}{2} \right|$$

$$\leq 2 \cdot \text{lindisc}(A).$$
Theorem 13.3.1 Let \mathcal{A} be a family of n sets on m points with $m \geq n$. Suppose that $\text{lindisc}(\mathcal{A}|_X) \leq K$ for every subset X of at most n points. Then $\text{lindisc}(\mathcal{A}) \leq K$.
Theorem 13.3.1 Let \mathcal{A} be a family of n sets on m points with $m \geq n$. Suppose that $\text{lindisc}(\mathcal{A}|_X) \leq K$ for every subset X of at most n points. Then $\text{lindisc}(\mathcal{A}) \leq K$.

Proof: For $p_1, \ldots, p_m \in [0, 1]$, call index j fixed if $p_i = 0$ or 1 otherwise call it floating, and let F denote the set of floating indices.
A theorem

Theorem 13.3.1 Let \mathcal{A} be a family of n sets on m points with $m \geq n$. Suppose that $\text{lindisc}(\mathcal{A}|_X) \leq K$ for every subset X of at most n points. Then $\text{lindisc}(\mathcal{A}) \leq K$.

Proof: For $p_1, \ldots, p_m \in [0, 1]$, call index j fixed if $p_i = 0$ or 1 otherwise call it floating, and let F denote the set of floating indices.

Our goal is to reduce p_1, p_2, \ldots, p_m so that $|F| < n$.
Theorem 13.3.1 Let \mathcal{A} be a family of n sets on m points with $m \geq n$. Suppose that $\text{lindisc}(\mathcal{A}|_X) \leq K$ for every subset X of at most n points. Then $\text{lindisc}(\mathcal{A}) \leq K$.

Proof: For $p_1, \ldots, p_m \in [0, 1]$, call index j fixed if $p_i = 0$ or 1 otherwise call it floating, and let F denote the set of floating indices.

Our goal is to reduce p_1, p_2, \ldots, p_m so that $|F| < n$.

Suppose $|F| \geq n$. Let y_1, \ldots, y_m be a nonzero solution to the homogeneous system

$$\sum_{j \in A \cap F} y_j = 0, \quad A \in \mathcal{A}.$$
Consider a line

\[p'_j = \begin{cases}
 p_j + \lambda y_j, & j \in F, \\
 p_j, & j \notin F.
\end{cases} \]

The line will hit the boundary of the hypercube \(Q^m \) and the intersection point gives a set of \(p'_1, \ldots, p'_m \) with the smaller floating indices. Critically, for all \(A \in A \).

\[
\sum_{j \in A} p'_j = \sum_{j \in A} p_j + \lambda \sum_{j \in A \cap F} y_j = \sum_{j \in S} p_j.
\]

Iterate this process, we get some \(p^*_1, \ldots, p^*_m \) with the set \(X \) of floating indices satisfying \(|X| < n \).
Since $\text{lindisc}(\mathcal{A}|_X) \leq K$, there exists $\epsilon_j, j \in X$ so that

$$\left| \sum_{j \in A \cap X} p_j^* - \epsilon_j \right| \leq K, \quad A \in \mathcal{A}.$$

Extend ϵ_j to $j \in \bar{X}$ by letting $\epsilon_j = p_j^*$. For any $A \in \mathcal{A}$,

$$\left| \sum_{j \in A} (p_j - \epsilon_j) \right| = \left| \sum_{j \in A} (p_j^* - \epsilon_j) \right|$$

$$= \left| \sum_{j \in A \cap X} (p_j^* - \epsilon_j) \right| \leq K.$$

Thus, $\text{lindisc}(\mathcal{A}) \leq K$. \qed
The **hereditary discrepancy** \(\text{herdisc}(\mathcal{A}) \) is defined by

\[
\text{herdisc}(\mathcal{A}) = \max_{X \in \Omega} \text{disc}(\mathcal{A}|_X).
\]
The **hereditary discrepancy** $\text{herdisc}(\mathcal{A})$ is defined by

\[
\text{herdisc}(\mathcal{A}) = \max_{X \in \Omega} \text{disc}(\mathcal{A}|_X).
\]

Theorem 13.3.2: $\text{lindisc}(\mathcal{A}) \leq \text{herdisc}(\mathcal{A})$.
The **hereditary discrepancy** $\text{herdisc}(\mathcal{A})$ is defined by

$$\text{herdisc}(\mathcal{A}) = \max_{X \in \Omega} \text{disc}(\mathcal{A}|_X).$$

Theorem 13.3.2: $\text{lindisc}(\mathcal{A}) \leq \text{herdisc}(\mathcal{A})$.

Proof: Set $K = \text{herdisc}(\mathcal{A})$. Let $p_1, \ldots, p_m \in [0, 1]$ be given. First assume all p_i have finite expansions in base 2. Let T be the minimal integer so that all $p_i2^T \in \mathbb{Z}$. Let J be the set of i for which p_i2^T is odd. As $\text{disc}(\mathcal{A}|_J) \leq K$, there exists $\epsilon_j \in \{-1, 1\}$, so that

$$\left| \sum_{j \in J \cap A} \epsilon_j \right| \leq K, \quad A \in \mathcal{A}.$$
For i from T to 0, let $p_j = p_j^{(T)}$ and $p_j^{(i-1)}$ be the "roundoffs" of p_j^i. For any $A \in \mathcal{A}$,

$$
\left| \sum_{j \in A} (p_j^{(i-1)} - p_j^{(i)}) \right| = \sum_{j \in J^{(i)} \cap A} 2^{-i} \epsilon_j^{(i)} \leq 2^{-i} K.
$$

Thus, for any $A \in \mathcal{A}$,

$$
\left| \sum_{j \in A} p_j^{(0)} - p_j^{(T)} \right| \leq \sum_{i=1}^{T} \left| \sum_{j \in A} (p_j^{(i-1)} - p_j^{(i)}) \right| \leq \sum_{i=1}^{T} 2^{-i} K \leq K.
$$
For $p_1, p_2, \ldots, p_m \in [0, 1]$, consider the function

$$f(p_1, \ldots, p_m) = \min_{\epsilon_1, \ldots, \epsilon_m \in \{0, 1\}} \max_{A \in A} \left| \sum_{i \in A} (\epsilon_i - p_i) \right|.$$

Note that $f(p_1, p_2, \ldots, p_m)$ is continuous.
For $p_1, p_2, \ldots, p_m \in [0, 1]$, consider the function

$$f(p_1, \ldots, p_m) = \min_{\epsilon_1, \ldots, \epsilon_m \in \{0, 1\}} \max_{A \in \mathcal{A}} \left| \sum_{i \in A} (\epsilon_i - p_i) \right|.$$

Note that $f(p_1, p_2, \ldots, p_m)$ is continuous. We just proved that

$$f(p_1, p_2, \ldots, p_m) \leq K$$

for a dense set of $[0, 1]^m$. Thus it holds for any $(p_1, \ldots, p_m) \in [0, 1]^m$. This implies

$$\text{lindisc}(\mathcal{A}) \leq K.$$
Corollary: 13.3.3: Let \mathcal{A} be a family of n sets on m points. Suppose $\text{disc}(\mathcal{A}|_X) \leq K$ for every subset X with at most n points. Then $\text{disc}(\mathcal{A}) \leq 2K$.
Corollary: 13.3.3: Let \mathcal{A} be a family of n sets on m points. Suppose $\text{disc}(\mathcal{A}|_X) \leq K$ for every subset X with at most n points. Then $\text{disc}(\mathcal{A}) \leq 2K$.

Proof: By Theorem 13.3.2, $\text{lindisc}(\mathcal{A}|_X) \leq K$ for every $X \subset \Omega$ with $|X| \leq n$. By Theorem 13.3.1, $\text{lindisc}(\mathcal{A}) \leq K$. Thus,

$$\text{disc}(\mathcal{A}) \leq 2 \cdot \text{lindisc}(\mathcal{A}) \leq 2K.$$
Corollary: 13.3.3: Let \mathcal{A} be a family of n sets on m points. Suppose $\text{disc}(\mathcal{A}|_X) \leq K$ for every subset X with at most n points. Then $\text{disc}(\mathcal{A}) \leq 2K$.

Proof: By Theorem 13.3.2, $\text{lindisc}(\mathcal{A}|_X) \leq K$ for every $X \subset \Omega$ with $|X| \leq n$. By Theorem 13.3.1, $\text{lindisc}(\mathcal{A}) \leq K$. Thus,

$$\text{disc}(\mathcal{A}) \leq 2 \cdot \text{lindisc}(\mathcal{A}) \leq 2K.$$

Corollary 13.3.4: For any family \mathcal{A} of n sets of arbitrary size

$$\text{disc}(\mathcal{A}) \leq 12\sqrt{n}.$$
Lower bounds: $\text{disc}(\mathcal{A}) \geq C \sqrt{n}$.
Lower bounds: $\text{disc}(A) \geq C\sqrt{n}$.

Two methods:
- Using Hadamard matrices.
Lower bounds: \(\text{disc}(\mathcal{A}) \geq C\sqrt{n} \).

Two methods:
- Using Hadamard matrices.
- Using probabilistic method.
A **Hadamard matrix** is a $n \times n$ matrix $H = (h_{ij})$ with all entries ± 1 and row vectors mutually orthogonal (and hence with column vectors mutually orthogonal).
A Hadamard matrix is a $n \times n$ matrix $H = (h_{ij})$ with all entries ± 1 and row vectors mutually orthogonal (and hence with column vectors mutually orthogonal).

- $HH' = nI$.
- If A is an $n \times n$ (\pm)-matrix, then $|\det(A)| \leq n^{n/2}$. The equality holds if and only if A is an Hadamard matrix.
- If H_1 and H_2 are Hadamard matrices, then so is $H_1 \otimes H_2$.
- If $\exists n \times n$ Hadamard matrix, then $n = 1, 2$ or $4|n$.

Hadamard matrices
A Hadamard matrix is a $n \times n$ matrix $H = (h_{ij})$ with all entries ± 1 and row vectors mutually orthogonal (and hence with column vectors mutually orthogonal).

- $HH' = nI$.
- If A is an $n \times n$ (\pm)-matrix, then $|\det(A)| \leq n^{n/2}$. The equality holds if and only if A is an Hadamard matrix.
- If H_1 and H_2 are Hadamard matrices, then so is $H_1 \otimes H_2$.
- If $\exists n \times n$ Hadamard matrix, then $n = 1, 2$ or $4|n$.

It is conjectured that Hadamard matrix exists for every $n = 1, 2$ and all multiples of 4.
A **Hadamard matrix** is a $n \times n$ matrix $H = (h_{ij})$ with all entries ± 1 and row vectors mutually orthogonal (and hence with column vectors mutually orthogonal).

- $HH' = nI$.
- If A is an $n \times n$ (\pm)-matrix, then $|\det(A)| \leq n^{n/2}$. The equality holds if and only if A is an Hadamard matrix.
- If H_1 and H_2 are Hadamard matrices, then so is $H_1 \otimes H_2$.
- If $\exists n \times n$ Hadamard matrix, then $n = 1, 2$ or $4|n$.

It is **conjectured** that Hadamard matrix exists for every $n = 1, 2$ and all multiples of 4.

Hall (1986) For all $\epsilon > 0$ and sufficiently large n, there is a Hadamard matrix of order between $n(1 - \epsilon)$ and n.

Hadamard matrices
Let H be a Hadamard matrix of order n (even) with first row and first column all ones. (Any Hadamard matrix can be so “normalized” by multiplying appropriate rows and columns by -1.) Let J be all ones square matrix of order n. Let $v = (v_1, \ldots, v_n)'$ be the column vector with each $v_i \in \{-1, 1\}$. Then

$$
\langle (H + J)v, (H + J)v \rangle = n^2 + 2n \left(\sum_{i=1}^{n} v_i \right)v_1 + n \left(\sum_{i=1}^{n} v_i \right)^2 \geq n^2.
$$

Setting $H^* = (H + J)/2$, then,

$$
\|H^*v\|_\infty \geq \sqrt{\|H^*v\|^2/n} \geq \frac{\sqrt{n}}{2}.
$$

Let \mathcal{A} be the family of subsets with incidence matrix H^*.

Construction I

Let H be a Hadamard matrix of order n (even) with first row and first column all ones. (Any Hadamard matrix can be so “normalized” by multiplying appropriate rows and columns by -1.) Let J be all ones square matrix of order n. Let $v = (v_1, \ldots, v_n)'$ be the column vector with each $v_i \in \{-1, 1\}$. Then

$$
\langle (H + J)v, (H + J)v \rangle = n^2 + 2n \left(\sum_{i=1}^{n} v_i \right)v_1 + n \left(\sum_{i=1}^{n} v_i \right)^2 \geq n^2.
$$

Setting $H^* = (H + J)/2$, then,

$$
\|H^*v\|_\infty \geq \sqrt{\|H^*v\|^2/n} \geq \frac{\sqrt{n}}{2}.
$$

Let \mathcal{A} be the family of subsets with incidence matrix H^*.

Construction II

- \(M \): a random 0, 1 matrix of order \(n \).
- \(d_i \): \(i \)-th row sum of \(M \), \(d_i = (1 + o(1))n/2 \).
- \(v := (v_1, \ldots, v_n)' \), \(v_i = \pm 1 \), set \(Mv = (L_1, L_2, \ldots, L_n) \).

\[
L_i \sim B(d_i, 1/2) - B(d_i, 1/2) \sim N(0, \sqrt{n}/2).
\]
Construction II

- \(M \): a random 0, 1 matrix of order \(n \).
- \(d_i \): \(i \)-th row sum of \(M \), \(d_i = (1 + o(1))n/2 \).
- \(v := (v_1, \ldots, v_n)' \), \(v_i = \pm 1 \), set \(Mv = (L_1, L_2, \ldots, L_n) \).

\[
L_i \sim B(d_i, 1/2) - B(d_i, 1/2) \sim N(0, \sqrt{n/2}).
\]

Pick \(\lambda \) so that

\[
\int_{-\lambda}^{\lambda} \frac{1}{\sqrt{2\pi}}e^{-t^2/2}dt < \frac{1}{2}.
\]

Then \(\Pr(|L_i| < \lambda\sqrt{n/2}) < \frac{1}{2} \). The expected number of \(v \) for which \(|Mv|_\infty < \lambda\sqrt{n/2} \) is less than 1. \(\exists M \) such that \(|Mv|_\infty \geq \lambda\sqrt{n/2} \) for every \(v \).
Construction II

- M: a random 0, 1 matrix of order n.
- d_i: i-th row sum of M, $d_i = (1 + o(1))n/2$.
- $v := (v_1, \ldots, v_n)'$, $v_i = \pm 1$, set $Mv = (L_1, L_2, \ldots, L_n)$.

$$L_i \sim B(d_i, 1/2) - B(d_i, 1/2) \sim N(0, \sqrt{n}/2).$$

Pick λ so that

$$\int_{-\lambda}^{\lambda} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt < \frac{1}{2}.$$

Then $\Pr(|L_i| < \lambda \sqrt{n}/2) < \frac{1}{2}$. The expected number of v for which $|Mv|_\infty < \lambda \sqrt{n}/2$ is less than 1. $\exists M$ such that $|Mv|_\infty \geq \lambda \sqrt{n}/2$ for every v.

Let \mathcal{A} be the family of sets with incident matrix M. Then

$$\text{disc}(\mathcal{A}) \geq \lambda \lambda \sqrt{n}/2.$$
For any A, let $\deg(A)$ denote the maximal number of sets containing any particular points.
Beck-Fiala Theorem

For any A, let $\deg(A)$ denote the maximal number of sets containing any particular points.

Theorem [Beck-Fiala 1981] Let A be a finite family of finite sets. If $\deg(A) \leq t$, then

$$\text{disc}(A) \leq 2t - 1.$$
For any A, let $\deg(A)$ denote the maximal number of sets containing any particular points.

Theorem [Beck-Fiala 1981] Let A be a finite family of finite sets. If $\deg(A) \leq t$, then

$$\text{disc}(A) \leq 2t - 1.$$

Proof: Assume $A = \{A_1, A_2, \ldots, A_m\}$ where all $A_i \subset [n]$. Let $x = (x_1, \ldots, x_n) \in [-1, 1]^n$. A set S_i has value $\sum_{j \in S_i} x_j$. We say an index j is **fixed** if $x_j = \pm 1$; otherwise we say j is **floating**. A set S_i is **safe** if it has at most t floating points; otherwise it is **active**.

Fact: There are fewer active sets than floating points.
Initially all j are floating; i.e. x is the zero vector. We will change x to x' with fewer floating points while keep the values of all sets to 0.

Iteration: For each active set, move the fixed points to the right hand side. We get a system of linear equations where the unknown variables are floating points. Since there are fewer active sets than floating points. This is an underdetermined system. The solution contains a line, parametrized

$$x'_j = x_j + \lambda y_j, \quad j \text{ floating},$$

on which the active sets retain value zero. Choose the smallest λ on the absolute value so that one of $x'_j = 1$.

continue
After many iterations, we get a vector x so that every set is safe and has value 0. For each floating point j, setting $x_j = \pm 1$ arbitrarily. For each set, the value may change less than $2t$ and, as it is an integer, it is at most $2t - 1$. □
After many iterations, we get a vector x so that every set is safe and has value 0. For each floating point j, setting $x_j = \pm 1$ arbitrarily. For each set, the value may change less than $2t$ and, as it is an integer, it is at most $2t - 1$. □

Conjecture: If $\deg(A) \leq t$, then $\text{disc}(A) \leq K\sqrt{t}$, for some absolute constant.