Topic Course on Probabilistic Methods
(Week 12)
Random Graphs (II)

Linyuan Lu
University of South Carolina
Selected topics

- Linearity of Expectation (2 weeks)
- Alterations (1 week)
- The second moment method (1 week)
- The Local Lemma (1-2 weeks)
- Correlation Inequalities (1 week)
- Large deviation inequalities (3 weeks)
- Poisson Paradigm (1 week)
- Random graphs (2 weeks)
- Discrepancy (1 week)
- Entropy (1 week)
Random graphs

- Supercritical regimes
- Barely Supercritical Phase
- The critical window
- Range V
- Threshold of connectivity
- Range VI
Now we consider $G(n, p)$ for $p = c/n$, with $c > 1$ constant. Let $y := y(c)$ be the positive real solution of $e^{-cy} = 1 - y$. Choose a large constant $K > 0$ and a small constant $\delta > 0$. Let $C(v)$ be the component of $G(n, p)$ containing v.
Now we consider $G(n, p)$ for $p = c/n$, with $c > 1$ constant. Let $y := y(c)$ be the positive real solution of $e^{-cy} = 1 - y$. Choose a large constant $K > 0$ and a small constant $\delta > 0$. Let $C(v)$ be the component of $G(n, p)$ containing v.

- $C(v)$ is small if $|C(v)| < K \ln n$.
Now we consider $G(n, p)$ for $p = c/n$, with $c > 1$ constant. Let $y := y(c)$ be the positive real solution of $e^{-cy} = 1 - y$. Choose a large constant $K > 0$ and a small constant $\delta > 0$. Let $C(v)$ be the component of $G(n, p)$ containing v.

- $C(v)$ is small if $|C(v)| < K \ln n$.
- $C(v)$ is giant if $||C(v)| - yn| < \delta n$.

Supercritical regimes
Now we consider $G(n, p)$ for $p = c/n$, with $c > 1$ constant. Let $y := y(c)$ be the positive real solution of $e^{-cy} = 1 - y$. Choose a large constant $K > 0$ and a small constant $\delta > 0$. Let $C(v)$ be the component of $G(n, p)$ containing v.

- $C(v)$ is **small** if $|C(v)| < K \ln n$.
- $C(v)$ is **giant** if $||C(v)| - yn| < \delta n$.
- $C(v)$ is **awkward** otherwise.
Supercritical regimes

Now we consider $G(n, p)$ for $p = c/n$, with $c > 1$ constant. Let $y := y(c)$ be the positive real solution of $e^{-cy} = 1 - y$. Choose a large constant $K > 0$ and a small constant $\delta > 0$. Let $C(v)$ be the component of $G(n, p)$ containing v.

- $C(v)$ is **small** if $|C(v)| < K \ln n$.
- $C(v)$ is **giant** if $||C(v)| - yn| < \delta n$.
- $C(v)$ is **awkward** otherwise.

Claim: The probability of having any awkward component is $o(n^{-20})$.
Proof: We will show for any awkward t, \(\Pr(|C(v)| = t) = o(n^{-22}) \). Note

\[
\Pr(|C(v)| = t) \leq \Pr(B(n - 1, 1 - (1 - \frac{c}{n})^t)) = t - 1.
\]
Proof: We will show for any awkward t, \(\Pr(|C(v)| = t) = o(n^{-22}) \). Note

\[
\Pr(|C(v)| = t) \leq \Pr(B(n - 1, 1 - (1 - \frac{c}{n})^t)) = t - 1.
\]

If $t = o(n)$, then $1 - (1 - \frac{c}{n})^t \approx \frac{ct}{n}$. So the mean is about ct, which is not close to t. If $t = xn$, then

$1 - (1 - \frac{c}{n})^t \approx 1 - e^{-cx}$. Since $1 - e^{-cx} \neq x$, so the mean is not near t.
Proof: We will show for any awkward t, \(\Pr(|C(v)| = t) = o(n^{-22}) \). Note

\[
\Pr(|C(v)| = t) \leq \Pr(B(n - 1, 1 - (1 - \frac{c}{n})t) = t - 1.
\]

If $t = o(n)$, then $1 - (1 - \frac{c}{n})^t \approx \frac{ct}{n}$. So the mean is about ct, which is not close to t. If $t = xn$, then $1 - (1 - \frac{c}{n})^t \approx 1 - e^{-cx}$. Since $1 - e^{-cx} \neq x$, so the mean is not near t. In either case, we can show

\[
\Pr\left(B(n - 1, 1 - (1 - \frac{c}{n})t\right) = O(e^{-Ct})
\]

for some constant C. Since $t \geq K \log n$ and K large enough, this probability is $o(n^{-22})$ as required.
Let $\alpha = \Pr(C(v) \text{ is not small})$. Then

$$\alpha = \Pr(T^p_c \geq S') \approx \Pr(T^p_c = \infty) = y.$$

Since no middle ground, not small is the same as giant.
Let $\alpha = \Pr(C(v) \text{ is not small})$. Then

$$\alpha = \Pr(T_{cp} \geq S) \approx \Pr(T_{cp} = \infty) = y.$$

Since no middle ground, not small is the same as giant.

$\Pr(C(v) \text{ is giant}) \approx y.$
Let $\alpha = \Pr(C(v) \text{ is not small})$. Then

$$\alpha = \Pr(T_{c}^{po} \geq S) \approx \Pr(T_{c}^{po} = \infty) = y.$$

Since no middle ground, not small is the same as giant.

- $\Pr(C(v) \text{ is giant}) \approx y$.
- Each giant component has size between $(y - \delta)n$ and $(y + \delta)n$.
Let $\alpha = \Pr(C(v) \text{ is not small})$. Then

$$\alpha = \Pr(T^\text{po}_c \geq S) \approx \Pr(T^\text{po}_c = \infty) = y.$$

Since no middle ground, not small is the same as giant.

- $\Pr(C(v) \text{ is giant}) \approx y$.
- Each giant component has size between $(y - \delta)n$ and $(y + \delta)n$.

It remains to show the giant component is unique and of size about yn.
Set $p_1 = n^{-3/2}$. Let $G_1 = G(n, p_1)$, $G = G(n, p)$, and $G^+ = G \cup G_1$. Note $G^+ \sim G(n, p^+) \text{ with } p^+ = p + p_1 - pp_1$.
Set \(p_1 = n^{-3/2} \). Let \(G_1 = G(n, p_1) \), \(G = G(n, p) \), and \(G^+ = G \cup G_1 \). Note \(G^+ \sim G(n, p^+) \) with \(p^+ = p + p_1 - pp_1 \).

Suppose that \(G \) has two giant components \(V_1 \) and \(V_2 \). Then the probability that \(V_1 \) and \(V_2 \) is not connected after sprinkling is at most

\[
(1 - p_1)^{|V_1||V_2|} = o(1).
\]
Set $p_1 = n^{-3/2}$. Let $G_1 = G(n, p_1)$, $G = G(n, p)$, and $G^+ = G \cup G_1$. Note $G^+ \sim G(n, p^+)$ with $p^+ = p + p_1 - pp_1$.

Suppose that G has two giant components V_1 and V_2. Then the probability that V_1 and V_2 is not connected after sprinkling is at most

$$(1 - p_1)|V_1||V_2| = o(1).$$

Now G^+ almost surely have a component of size at least $2(y - \delta)n > (y + \delta)n$. It is an awkward component for G^+. Contradiction!
Sprinkling

Set $p_1 = n^{-3/2}$. Let $G_1 = G(n, p_1)$, $G = G(n, p)$, and $G^+ = G \cup G_1$. Note $G^+ \sim G(n, p^+)$ with $p^+ = p + p_1 - pp_1$.

Suppose that G has two giant components V_1 and V_2. Then the probability that V_1 and V_2 is not connected after sprinkling is at most

$$(1 - p_1)|V_1||V_2| = o(1).$$

Now G^+ almost surely have a component of size at least $2(y - \delta)n > (y + \delta)n$. It is an awkward component for G^+. Contradiction!

Since δ can be made arbitrarily small, the unique giant component has size $(1 + o(1))yn$.
Now we consider $G(n, p)$ with $p = (1 + \epsilon)/n$ where $\epsilon = \lambda n^{-1/3}$ for $\lambda \to \infty$. This is similar to the supercritical phase with extra caution.
Now we consider $G(n, p)$ with $p = (1 + \epsilon)/n$ where
\[
\epsilon = \lambda n^{-1/3}
\]
for $\lambda \to \infty$. This is similar to the supercritical phase with extra caution.
Now we consider $G(n, p)$ with $p = (1 + \epsilon)/n$ where
$\epsilon = \lambda n^{-1/3}$ for $\lambda \to \infty$. This is similar to the supercritical phase with extra caution.

- $C(v)$ is small if $|C(v)| < K\epsilon^{-2} \ln n$.

Now we consider $G(n, p)$ with $p = (1 + \varepsilon)/n$ where
$\varepsilon = \lambda n^{-1/3}$ for $\lambda \to \infty$. This is similar to the supercritical
phase with extra caution.

- $C(v)$ is **small** if $|C(v)| < K\varepsilon^2 \ln n$.
- $C(v)$ is **giant** if $\|C(v)| - yn\| < \delta yn$; where $y \approx 2\varepsilon$.
Now we consider $G(n, p)$ with $p = (1 + \epsilon)/n$ where $
olinebreak \epsilon = \lambda n^{-1/3}$ for $\lambda \to \infty$. This is similar to the supercritical phase with extra caution.

- $C(v)$ is **small** if $|C(v)| < K\epsilon^{-2}\ln n$.
- $C(v)$ is **giant** if $|C(v) - yn| < \delta yn$; where $y \approx 2\epsilon$.
- $C(v)$ is **awkward** otherwise.
Now we consider $G(n, p)$ with $p = (1 + \epsilon)/n$ where $\epsilon = \lambda n^{-1/3}$ for $\lambda \to \infty$. This is similar to the supercritical phase with extra caution.

- $C(v)$ is **small** if $|C(v)| < K\epsilon^{-2}\ln n$.
- $C(v)$ is **giant** if $|C(v)| - yn < \delta yn$; where $y \approx 2\epsilon$.
- $C(v)$ is **awkward** otherwise.

The following statements hold.

- $\Pr(\exists \text{ an awkward component }) = O(n^{-20})$.
- The escape probability $\alpha \approx y \approx 2\epsilon$.
- Sprinkling works with $p_1 = n^{-4/3}$.
Now consider $G(n, p)$ with $p = \frac{1}{n} + \lambda n^{-4/3}$ for a fixed λ. This critical window has been studied by Bollabás, Łuczak, Janson, Knuth, Pittel and many others. It requires delicate calculations.
Now consider $G(n, p)$ with $p = \frac{1}{n} + \lambda n^{-4/3}$ for a fixed λ. This critical window has been studied by Bollabás, Łuczak, Janson, Knuth, Pittel and many others. It requires delicate calculations.

For fixed $c > 0$, Let X be the number of tree components of size $k = cn^{2/3}$. Then

$$E(X) = \binom{n}{k} k^{k-2} p^{k-1} (1 - p)^{k(n-k) + \binom{k}{2} - (k-1)}.$$
Now consider $G(n, p)$ with $p = \frac{1}{n} + \lambda n^{-4/3}$ for a fixed λ. This critical window has been studied by Bollabás, Łuczak, Janson, Knuth, Pittel and many others. It requires delicate calculations.

For fixed $c > 0$, Let X be the number of tree components of size $k = cn^{2/3}$. Then

$$
E(X) = \binom{n}{k}k^{k-2}p^{k-1}(1 - p)^{k(n-k)+\binom{k}{2}-(k-1)}.
$$

Recall

$$
\ln(1 + x) = x - \frac{1}{2}x^2 + O(x^3).
$$
We estimate

\[
\binom{n}{k} \approx \frac{n^k}{(k/e)^k \sqrt{2\pi k}} \prod_{i=1}^{k-1} \left(1 - \frac{i}{n}\right),
\]

and

\[
\prod_{i=1}^{k-1} \left(1 - \frac{i}{n}\right) = e^{\sum_{i=1}^{k-1} \ln(1-i/n)}
\]

\[
= e^{-\sum_{i=1}^{k-1} (i/n + i^2/2n^2 + O(i^3/n^3))}
\]

\[
= e^{-\frac{k^2}{2n} - \frac{k^3}{6n^2} + o(1)}
\]

\[
= e^{-\frac{k^2}{2n} - \frac{c^3}{6} + o(1)}.
\]
We also estimate

\[
p^{k-1} = n^{1-k}(1 + \lambda n^{-1/3})^{k-1}
= n^{1-k} e^{(k-1) \ln(1+\lambda n^{-1/3})}
= n^{1-k} e^{k \lambda n^{-1/3} - \frac{1}{2} c \lambda^2 + o(1)},
\]
We also estimate

\[p^{k-1} = n^{1-k}(1 + \lambda n^{-1/3})^{k-1} \]
\[= n^{1-k}e^{(k-1)\ln(1+\lambda n^{-1/3})} \]
\[= n^{1-k}e^{k\lambda n^{-1/3} - \frac{1}{2}c\lambda^2 + o(1)} , \]

and

\[(1 - p)^{k(n-k) + \binom{k}{2} - (k-1)} = e^{(kn-k^2/2+O(k))\ln(1-p)} \]
\[= e^{-(kn-k^2/2+O(k))(p+p^2/2+O(p^3))} \]
\[= e^{-k + \frac{k^2}{2n} - \frac{\lambda k}{n^{1/3}} + \frac{\lambda c^2}{2} + o(1)} . \]
We also estimate

\[p^{k-1} = n^{1-k}(1 + \lambda n^{-1/3})^{k-1} \]

\[= n^{1-k}e^{(k-1) \ln(1 + \lambda n^{-1/3})} \]

\[= n^{1-k}e^{k\lambda n^{-1/3} - \frac{1}{2}c\lambda^2 + o(1)}, \]

and

\[(1 - p)^{k(n-k)+\binom{k}{2}-(k-1)} = e^{(kn-k^2/2+O(k)) \ln(1-p)} \]

\[= e^{-(kn-k^2/2+O(k))(p+p^2/2+O(p^3))} \]

\[= e^{\frac{-k^2}{2n} - \frac{\lambda k}{n^{1/3}} + \frac{\lambda c^2}{2} + o(1)}. \]
We get

$$E(X) \approx nk^{-5/2}(2\pi)^{-1/2}e^A,$$

where

$$A = \frac{(\lambda - c)^3 - \lambda^3}{6}.$$
We get
\[E(X) \approx nk^{-5/2}(2\pi)^{-1/2}e^A, \]
where
\[A = \frac{(\lambda-c)^3-\lambda^3}{6}. \]
For any fixed \(a, b, \lambda \), let \(X \) be the number of tree components of size between \(an^{2/3} \) and \(bn^{2/3} \). Then
\[\lim_{n \to \infty} E(X) = \int_a^b e^{A(c)}c^{-5/2}(2\pi)^{-1/2}dc. \]
Wright (1977): For a fixed l, there are asymptotically
$c_l k^{k-2+(3l/2)}$ connected graphs on k vertices with
$(k - 1 + l)$-edges.
Wright (1977): For a fixed l, there are asymptotically $c_l k^{k-2+(3l/2)}$ connected graphs on k vertices with $(k - 1 + l)$-edges.

Let $X^{(l)}$ be the number of components on k vertices with $k - 1 + l$ edges. Then a similar calculation shows

$$\lim_{n \to \infty} E(X^{(l)}) = \int_a^b e^{A(c)} c^{-5/2} (2\pi)^{-1/2} (c_l c^{3l/2}) dc.$$
Wright (1977): For a fixed l, there are asymptotically $c_l k^{k-2+(3l/2)}$ connected graphs on k vertices with $(k - 1 + l)$-edges.

Let $X^{(l)}$ be the number of components on k vertices with $k - 1 + l$ edges. Then a similar calculation shows

$$
\lim_{n \to \infty} E(X^{(l)}) = \int_a^b e^{A(c)} c^{-5/2} (2\pi)^{-1/2} (c_l c^{3l/2}) dc.
$$

Let X^* be the total number of components of size between $an^{2/3}$ and $bn^{2/3}$. Let $g(c) = \sum_{l=0}^{\infty} c_l c^{3l/2}$. Then

$$
\lim_{n \to \infty} E(X^*) = \int_a^b e^{A(c)} c^{-5/2} (2\pi)^{-1/2} g(c) dc.
$$
For a fixed k, consider two random graphs $G(n, p)$ and $G(n', p')$. Assume $c = np > 1$ and $c' = n'p' < 1$. We say $G(n, p)$ and $G(n', p')$ are dual to each other if $ce^{-c} = c'e^{-c'}$.
For a fixed k, consider two random graphs $G(n, p)$ and $G(n', p')$. Assume $c = np > 1$ and $c' = n'p' < 1$. We say $G(n, p)$ and $G(n', p')$ are dual to each other if $ce^{-c} = c'e^{-c'}$.

Let $y = 1 - c'/c$. Then y satisfies the equation $e^{-cy} = 1 - y$. Hence the size of the giant component in $G(n, p)$ is roughly yn.
For a fixed k, consider two random graphs $G(n, p)$ and $G(n', p')$. Assume $c = np > 1$ and $c' = n'p' < 1$. We say $G(n, p)$ and $G(n', p')$ are dual to each other if $ce^{-c} = c'e^{-c'}$.

Let $y = 1 - c'/c$. Then y satisfies the equation $e^{-cy} = 1 - y$. Hence the size of the giant component in $G(n, p)$ is roughly yn. We have

$$
\lim_{n\to\infty} \Pr(C(v) = k \text{ in } G(n, p) \mid C(v) \text{ is small})
= \frac{1}{1 - y} \frac{e^{-ck}(ck)^{k-1}}{k!} = \frac{e^{-c'k}(c'k)^{k-1}}{k!}
= \lim_{n'\to\infty} \Pr(C(v) = k \text{ in } G(n', p')).
$$
Consider $G(n, p)$ with

$$p = \frac{\log n}{kn} + \frac{(k - 1) \log \log n}{kn} + \frac{t}{n} + o\left(\frac{1}{n}\right),$$

then there are only trees of size at most k except for the giant component. Let X be the number of trees of k vertices.
Consider $G(n, p)$ with

$$p = \frac{\log n}{kn} + \frac{(k - 1) \log \log n}{kn} + \frac{t}{n} + o\left(\frac{1}{n}\right),$$

then there are only trees of size at most k except for the giant component. Let X be the number of trees of k vertices.

$$E(X) = \binom{n}{k} k^{k-2} p^{k-1} (1 - p)^{k(n-k)} \binom{k}{2} = \frac{1}{k^2 p \cdot k!} (knp)^k e^{-knp} \approx \frac{e^{-kt}}{k \cdot k!}.$$
Consider $G(n, p)$ with

$$p = \frac{\log n}{kn} + \frac{(k - 1) \log \log n}{kn} + \frac{t}{n} + o\left(\frac{1}{n}\right),$$

then there are only trees of size at most k except for the giant component. Let X be the number of trees of k vertices.

$$E(X) = \binom{n}{k} k^{k-2} p^{k-1} (1 - p)^{k(n-k)} + \binom{k}{2}^{-k+1}
\approx \frac{1}{k^2 p \cdot k!} (knp)^k e^{-knp} \approx \frac{e^{-kt}}{k \cdot k!}.$$

Further, X follows the Poisson distribution.
Threshold of connectivity

For $k = 1$ and $p = \frac{\log n}{n} + \frac{t}{n} + o\left(\frac{1}{n}\right)$, $G(n, p)$ consists of a giant component with $n - O(1)$ vertices and bounded number of isolated vertices.
For $k = 1$ and $p = \frac{\log n}{n} + \frac{t}{n} + o\left(\frac{1}{n}\right)$, $G(n, p)$ consists of a giant component with $n - O(1)$ vertices and bounded number of isolated vertices.

- The distribution of the number of isolated vertices again has a Poisson distribution with mean value e^{-t}.
Threshold of connectivity

For $k = 1$ and $p = \frac{\log n}{n} + \frac{t}{n} + o\left(\frac{1}{n}\right)$, $G(n, p)$ consists of a giant component with $n - O(1)$ vertices and bounded number of isolated vertices.

- The distribution of the number of isolated vertices again has a Poisson distribution with mean value e^{-t}.
- The probability that $G(n, p)$ is connected tends to $e^{e^{-t}}$.
Threshold of connectivity

For $k = 1$ and $p = \frac{\log n}{n} + \frac{t}{n} + o\left(\frac{1}{n}\right)$, $G(n, p)$ consists of a giant component with $n - O(1)$ vertices and bounded number of isolated vertices.

- The distribution of the number of isolated vertices again has a Poisson distribution with mean value e^{-t}.
- The probability that $G(n, p)$ is connected tends to $e^{-e^{-t}}$.
- As $t \to \infty$, $G(n, p)$ is almost surely connected.
Consider $G(n, p)$ with $p \sim \omega(n) \log n / n$ where $\omega(n) \to \infty$.
Consider $G(n, p)$ with $p \sim \omega(n) \log n / n$ where $\omega(n) \to \infty$. In this range, $G_{n,p}$ is not only almost surely connected, but the degrees of almost all vertices are asymptotically equal.
Consider $G(n, p)$ with $p \sim \omega(n) \log n / n$ where $\omega(n) \to \infty$.

In this range, $G_{n,p}$ is not only almost surely connected, but the degrees of almost all vertices are asymptotically equal.

Let $X = d_v$ be the degree of v. By Chernoff’s inequality, with probability at least $1 - O(n^{-2})$, we have

$$|X - \mathbb{E}(X)| < 2\sqrt{\omega(n) \log n}.$$

Almost surely, for all v, d_v is in the interval $[d - 2\sqrt{\omega(n) \log n}, d + 2\sqrt{\omega(n) \log n}]$, where $d = np$ is the expected degree.
Theorem: Let H be a strictly balanced graph with v vertices, m edges, and a automorphisms. Let $c > 0$ be arbitrary. Then with $p = cn^{-v/m}$,

$$\lim_{n \to \infty} \Pr(G(n, p) \text{ contains no } H) = e^{-c^m/a}.$$
Theorem: Let H be a strictly balanced graph with v vertices, m edges, and a automorphisms. Let $c > 0$ be arbitrary. Then with $p = cn^{-v/m}$,

$$\lim_{n \to \infty} \Pr(G(n, p) \text{ contains no } H) = e^{-c^m/a}.$$

Proof: Let A_α, $1 \leq \alpha \leq \binom{n}{v} v!/a$, range over the edge sets of possible copies of H and B_α be the event $A_\alpha \subset G(n, p)$. We will apply Janson’s Inequality.

$$\lim_{n \to \infty} \mu = \lim_{n \to \infty} \binom{n}{v} v! p^m / a = c^m / a.$$

$$\lim_{n \to \infty} M = e^{-c^m/a}.$$
Proof

Consider $\Delta = \sum_{\alpha \sim \beta} \Pr(B_\alpha \land B_\beta)$. We split the sum according to the number of vertices in $A_\alpha \cap A_\beta$. For $2 \leq j \leq v$, let f_j be the maximal number of edges in $A_\alpha \cap A_\beta$ where $\alpha \sim \beta$ and α and β intersect in j vertices. Since H is strictly balanced,

$$\frac{f_j}{j} < \frac{m}{v}.$$

There are $O(n^{2v-j})$ choices of α, β. For such α, β,

$$\Pr(B_\alpha \land B_\beta) = p^{|A_\alpha \cup A_\beta|} \leq p^{2m-f_j}.$$
\[\Delta \leq \sum_{j=2}^{v} O(n^{2v-j})O(n^{(v/m)(2m-f_j)}). \]
\[\Delta \leq \sum_{j=2}^{v} O(n^{2v-j})O(n^{(v/m)(2m-f_j)}). \]

But

\[2v - j - (v/m)(2m - f_j) = \frac{vf_j}{e} - j < 0. \]
\[\Delta \leq \sum_{j=2}^{v} O(n^{2v-j})O(n^{(v/m)(2m-f_j)}) \, . \]

But
\[2v - j - (v/m)(2m - f_j) = \frac{vf_j}{e} - j < 0. \]

Each term is \(o(1) \) and hence \(\Delta = o(1) \).
\[\Delta \leq \sum_{j=2}^{v} O(n^{2v-j})O(n^{(v/m)(2m-f_j)}). \]

But

\[2v - j - (v/m)(2m - f_j) = \frac{vf_j}{e} - j < 0. \]

Each term is \(o(1) \) and hence \(\Delta = o(1) \). By Janson’s inequality,

\[\lim_{n \to \infty} \Pr(\bigwedge \bar{B}_\alpha) = \lim_{n \to \infty} M = e^{-c^m/a}. \]

The proof is finished.
Clique number of $G(n, \frac{1}{2})$

For the rest of slides, we assume $p = \frac{1}{2}$ and $G := G(n, 1/2)$. Let $\omega(G)$ Be the clique number. For a fixed $c > 0$, let $n, k \to \infty$ so that

$$\binom{n}{k} 2^{-\binom{k}{2}} \to c.$$
Clique number of $G(n, \frac{1}{2})$

For the rest of slides, we assume $p = \frac{1}{2}$ and $G := G(n, 1/2)$. Let $\omega(G)$ be the clique number. For a fixed $c > 0$, let $n, k \rightarrow \infty$ so that

$$\binom{n}{k} 2^{-\frac{k}{2}} \rightarrow c.$$

We get $n \sim \frac{k}{e\sqrt{2}} 2^{k/2}$ and $k \sim \frac{2\ln n}{\ln 2}$.
Clique number of $G(n, \frac{1}{2})$

For the rest of slides, we assume $p = \frac{1}{2}$ and $G := G(n, 1/2)$. Let $\omega(G)$ be the clique number. For a fixed $c > 0$, let $n, k \to \infty$ so that

$$\binom{n}{k} 2^{-\binom{k}{2}} \to c.$$

We get $n \sim \frac{k}{e\sqrt{2}} 2^{k/2}$ and $k \sim \frac{2\ln n}{\ln 2}$.

For this k, apply Poisson paradigm to X: the number of k-cliques. We have

$$\Pr(\omega(G < k) = \Pr(X = 0) = (1 + o(1)) e^{-c}.$$
Let \(n_0(k) \) be the minimum \(n \) for which \(\binom{n}{k} 2^{-\binom{k}{2}} \geq 1 \). For any \(\lambda \in (-\infty, +\infty) \) if \(n = n_0(k) \left[1 + \frac{\lambda + o(1)}{k} \right] \), then

\[
\left(\binom{n}{k} \right) 2^{-\binom{k}{2}} = \left[1 + \frac{\lambda + o(1)}{k} \right]^k = e^\lambda + o(1).
\]

and so

\[
\Pr(\omega(G) < k) = e^{-e^\lambda} + o(1).
\]

Note that \(e^{-e^\lambda} \) ranges from 1 to 0 as \(\lambda \) ranges from \(-\infty\) to \(+\infty\). Let \(K \) be arbitrarily large and set

\[
I_k = [n_0(k)(1 - K/k), n_0(k)(1 + K/k)] .
\]
For $k \geq k_0(K)$, $I_{k-1} \cap I_k = \emptyset$ since $n_0(k + 1) \sim \sqrt{2}n_0(k)$.

If n lies between the intervals, $I_k < n < I_{k+1}$, then

$$\Pr(\omega(G) = k) \geq e^{-e^{-K}} - e^{-e^K} + o(1).$$

With probability near one, we have $\omega(G) = k$.
For \(k \geq k_0(K) \), \(I_{k-1} \cap I_k = \emptyset \) since \(n_0(k + 1) \sim \sqrt{2}n_0(k) \).

- If \(n \) lies between the intervals, \(I_k < n < I_{k+1} \), then
 \[
 \Pr(\omega(G) = k) \geq e^{-e^{-K}} - e^{-e^K} + o(1).
 \]
 With probability near one, we have \(\omega(G) = k \).

- If \(n \) lies in the interval \(I_k \), then we still have \(I_{k-1} < n < I_{k+1} \), then
 \[
 \Pr(\omega(G) = k - 1 \text{ or } k) \geq e^{-e^{-K}} - e^{-e^K} + o(1).
 \]
 With probability near one, we have \(\omega(G) = k - 1 \text{ or } k \).
Let \(f(k) = \binom{n}{k}2^{-\binom{k}{2}} \) and \(k_0 = k_0(n) \) be that value for which

\[
f(k_0 - 1) > 1 > f(k_0).
\]

Setting \(k := k_0(n) - 4 \), then \(f(k) > n^{3+o(1)} \).

We apply the Extended Janson Inquality to estimate \(\Pr(\omega(G') < k) \). We have \(\Delta \mu^2 = \sum_{i=2}^{k-1} g(i) \), where

\[
g(i) = \binom{k}{i} \binom{n-k}{k-i} \frac{i^2}{i^2} \binom{n}{k}.
\]

As \(k \sim 2 \log_2 n \), \(g(2) \sim k^4/n^2 \) dominates. Thus,

\[
\Pr(\omega(G') < k) < e^{-\mu^2/2\Delta} = e^{-\Theta(n^2/\ln^4 n)}.
\]
Theorem Bollabás (1988): Almost surely

\[\chi(G) \sim \frac{n}{2 \log_2 n}. \]
Theorem Bollabás (1988): Almost surely
\[\chi(G) \sim \frac{n}{2 \log_2 n}. \]

Proof: Note that \(\alpha(G) = \omega(\bar{G}) \) and \(\bar{G} \) has the same distribution as \(G(n, 1/2) \). We have \(\alpha(G) \leq (2 + o(1)) \log_2 n \). Thus almost surely
\[
\Pr(\chi(G) \geq \frac{n}{\alpha(G)}) \geq (1 + o(1)) \frac{n}{2 \log_2 n}.
\]
Let $m = \left\lfloor \frac{n}{\ln^2 n} \right\rfloor$. For any set S of m vertices the restriction $G|_S$ has the distribution $G(m, \frac{1}{2})$. Let $k := k(m)$ as before. Note

$$k \sim 2 \log_2 m \sim 2 \log_2 n.$$

There are at most $\binom{n}{m} < 2^n = 2^{m^{1+o(1)}}$ such set of S. Hence

$$\Pr(\exists S (\alpha(G|_S) < k)) < 2^{m^{1+o(1)}} e^{-m^{2+o(1)}} = o(1).$$
Let $m = \left\lfloor \frac{n}{\ln^2 n} \right\rfloor$. For any set S of m vertices the restriction $G|_S$ has the distribution $G(m, \frac{1}{2})$. Let $k := k(m)$ as before. Note

$$k \sim 2 \log_2 m \sim 2 \log_2 n.$$

There are at most $\binom{n}{m} < 2^n = 2^{m^{1+o(1)}}$ such set of S. Hence

$$\Pr(\exists S(\alpha(G|_S) < k)) < 2^{m^{1+o(1)}} e^{-m^{2+o(1)}} = o(1).$$

Almost surely every m vertices contain a k-element independent set.
Now we pull out k-element independent sets and give each a distinct color until there are less than m vertices left. Then we given each point a distinct color. We have

$$
\chi(G) \leq \left\lceil \frac{n - m}{k} \right\rceil + m
$$

$$
= (1 + o(1)) \frac{n}{2 \log_2 n} + o \left(\frac{n}{\log_2 n} \right)
$$

$$
= (1 + o(1)) \frac{n}{2 \log_2 n}.
$$

The proof is finished. \qed