Math778P Homework 4 Solution

1. Let \(G = (V, E) \) be a simple graph and suppose each \(v \in V \) is associated with a set \(S(v) \) of colors of size at least \(10d \), where \(d \geq 1 \). Suppose, in addition, that for each \(v \in V \) and \(c \in S(v) \) there at most \(d \) neighbors \(u \) of \(v \) such that \(c \) lies in \(S(u) \). Prove that there is a proper coloring of \(G \) assigning to each vertex \(v \) a color from its class \(S(v) \).

Proof by Cliff: Without loss of generality, assume each color class has size \(10d \). Consider a coloring of \(G \) that assigns to each vertex a color from its class. Let \(A^c_{uv} \) be the event that \(c(u) = c(v) = c \) where \(uv \in E(G) \). We create a dependency graph for this probability space. Then there are three separate types of events that share a dependency with \(A^c_{uv} \), i.e. \(A^c_{uv} \sim A^c_{u'v'} \). That is if (i) : \(u = u' \), (ii) : \(v = v' \) or (iii) : \(uv = u'v' \) and \(c \neq c' \). In case (i), we have \(10d \) choices for \(c' \) and \(d \) choices for \(v' \) giving an upper bound of \(10d^2 \) dependencies. The same goes for case (ii). For case (iii), we have \(10d - 1 \) choices for \(c' \). Thus the total number of dependencies \(D \) is bounded by \(20d^2 + 10d \).

Also \(\Pr(A^c_{uv}) = \left(\frac{1}{10d} \right)^2 \). So we may apply the Symmetric version of the Lovasz Local Lemma to see that \(e \ast \Pr(A^c_{uv}) \ast D \leq e \ast (20d^2 + 10d) \leq 100 \). Since \(d \geq 1 \), so LLL tells us that \(\Pr(\bigcap_{u,v,c} A^c_{uv}) > 0 \Rightarrow \) there exists a proper list coloring of \(G \). □

2. Let \(G = (V, E) \) be a cycle of length \(4n \) and let \(V = V_1 \cup V_2 \cup \cdots \cup V_n \) be a partition of its \(4n \) vertices into \(n \) pairwise disjoint subsets, each of cardinality 4. Is it true that there must be an independent set of \(G \) containing precisely one vertex from each \(V_i \)? (Prove or supply a counter example.)

Proof by Travis: Uniformly and independently at random select one vertex from each \(V_i \). For each \(1 \leq i \leq n \) label the vertices in \(V_i = \{ v_{i,1}, v_{i,2}, v_{i,3}, v_{i,4} \} \). For each \(1 \leq i < j \leq n \), let \(A_{i,k_1,j,k_2} \) be the event that \(v_{i,k_1} \) and \(v_{j,k_2} \) are chosen and that \(v_{i,k_1} \sim v_{j,k_2} \). It follows that

\[
P(A_{i,k_1,j,k_2}) = \begin{cases}
0 & \text{if } v_{i,k_1} \text{ is not adjacent to } v_{j,k_2} \\
\frac{1}{16} & \text{if } v_{i,k_1} \text{ is adjacent to } v_{j,k_2}
\end{cases}
\]

For \(1 \leq i < j \leq n \) and for each \(1 \leq k_1, k_2 \leq 4 \) define:

\[
x_{i,k_1,j,k_2} = \begin{cases}
0 & \text{if } v_{i,k_1} \text{ is not adjacent to } v_{j,k_2} \\
\frac{1}{2} & \text{if } v_{i,k_1} \text{ is adjacent to } v_{j,k_2}
\end{cases}
\]

1
Let D be the dependency digraph of the events A_{i,k_1,j,k_2}, with vertices indexed similarly to the subscripts of A. We now intend to show that for each event,

$$P(A_{i,k_1,j,k_2}) \leq x_{i,k_1,j,k_2} \prod_{(i,k_1,j,k_2) \sim a} (1 - x_a).$$

Note first that if $v_{i,k_1} \not\sim v_{j,k_2}$ then $P(A_{i,k_1,j,k_2}) = 0$ and $x_{i,k_1,j,k_2} = 0$, so the inequality holds for all events corresponding to non-adjacent vertices. If $v_{i,k_1} \sim v_{j,k_2}$ then v_{i,k_1} only has a single additional neighbor (since its degree is 2) and likewise for v_{j,k_2}. Thus, there at most 2 events that are dependent on A_{i,k_1,j,k_2}, say events A_a and A_b. Then $x_a = \frac{1}{2}$ and $x_b = \frac{1}{2}$. It follows that

$$P(A_{i,k_1,j,k_2}) = \frac{1}{16} \leq \frac{1}{8} = x_{i,k_1,j,k_2} \cdot (1 - x_a)(1 - x_b).$$

Thus, the condition of the Local Lemma are satisfied. Hence, with positive probability, no event A_{i,k_1,j,k_2} holds; in other words, the chosen set is in fact independent.

3. Prove that there is an absolute constant $c > 0$ such that for every k there is a set S_k of at least $ck \ln k$ integers, such that for every coloring of the integers by k colors there is an integer x for which the set $x + S$ does not intersect all color classes.

Fang Tian, see the reference paper “Alon, Kriz, Nesetril, How to color shift hypergraphs”.

4. A family of subsets G is called **intersecting** if $G_1 \cap G_2 \neq \emptyset$ for all $G_1,G_2 \in G$. Let F_1,F_2,\ldots,F_k be k intersecting families of subsets of $\{1,2,\ldots,n\}$. Prove that

$$\left| \bigcup_{i=1}^k F_i \right| \leq 2^n - 2^{n-k}.$$

Proof by Edward: We begin by defining, for each $i \in [k]$,

$$F_i^* = \{ F \subseteq [n] : \exists F' \supseteq F' \subset F \}$$

Now suppose $A \in F_i^*$. Then if $A \subseteq B$, we have $B \in F_i^*$ as well, since we may use the same witness set F' as we did with A. So F_i^* is monotone increasing. Thus, for any $i,j \in [k]$, by Proposition 6.3.1, it follows

$$\Pr(F_i^* \cap F_j^*) \geq \Pr(F_i^*)\Pr(\cap F_i^*)$$
By applying this result repeatedly, this implies
\[
\Pr(\bigcap_{i=1}^{k} F_i^*) \geq \prod_{i=1}^{k} \Pr(F_i^*)
\]

Now fix any \(i \in [k] \). Take a random set \(R \subset [n] \). If \(R \in F_i^* \), then necessarily \(\overline{R} \notin F_i^* \). In particular, \(\overline{R} \in \overline{F_i^*} \) and \(R \notin \overline{F_i^*} \). On the other hand, if \(R \notin F_i^* \) then this forces \(R \in F_i^* \). Further, \(\overline{R} \notin \overline{F_i^*} \) and \(\overline{R} \in F_i^* \). That is, \(R \mapsto \overline{R} \) gives a bijection between \(F_i^* \) and \(\overline{F_i^*} \). And so, \(\Pr(F_i^*) = \Pr(\overline{F_i^*}) = \frac{1}{2} \). Thus,

\[
\Pr(\bigcap_{i=1}^{k} F_i^*) \geq \left(\frac{1}{2} \right)^k
\]

Therefore, taking the complement, we obtain

\[
1 - \left(\frac{1}{2} \right)^k \geq \Pr\left(\bigcap_{i=1}^{k} F_i^* \right) = \Pr\left(\bigcup_{i=1}^{k} F_i^* \right) \geq \frac{| \bigcup_{i=1}^{k} F_i^* |}{2^n}
\]

And so, after multiplying by \(2^n \), we arrive at the desired inequality:

\[
| \bigcup_{i=1}^{k} F_i^* | \leq 2^n - 2^{n-k}.
\]

5. Show that the probability that in the random graph \(G(2k, 1/2) \) the maximum degree is at most \(k-1 \) is at least \(1/4^k \).

Proof by Taylor: Let the vertices in the random graph \(G = G(2k, 1/2) \) be enumerated \(v_1, v_2, \ldots, v_{2k} \) and let \(G \) have the property \(Q_i \) if the degree of the vertex \(v_i \) in \(G \) is at most \(k-1 \). Observe that each \(Q_i \) is monotone decreasing, since if \(G \in Q_i \) then for any subgraph \(H \subset G \) we have \(\deg_H(v_i) \leq \deg_G(v_i) \leq k-1 \) and similarly we can show the intersection of any number of the \(Q_i \) is monotone decreasing. Since
the degree of any vertex in G is at most $2k - 1$, we have

$$\Pr[G \in Q_i] = \sum_{i=0}^{k-1} \binom{2k-1}{i} \left(\frac{1}{2}\right)^i \left(\frac{1}{2}\right)^{2k-1-i}$$

$$= \frac{1}{2} \sum_{i=0}^{2k-1} \binom{2k-1}{i} \left(\frac{1}{2}\right)^{2k-1}$$

$$= \frac{1}{2} \cdot 2^{2k-1} \cdot \left(\frac{1}{2}\right)^{2k-1}$$

$$= \frac{1}{2}.$$

Now applying theorem 6.3.3 $2k$ times we obtain

$$\Pr \left[G \in \bigcap_{i=1}^{2k} Q_i \right] \geq \prod_{i=1}^{2k} \Pr[G \in Q_i]$$

$$\geq \left(\frac{1}{2}\right)^{2k}$$

$$= \frac{1}{4^k}$$

and therefore, the probability that in the random graph G the maximum degree is at most $k - 1$ is at least $1/4^k$. \qed

6. Suppose that $p = \frac{c \ln n}{n}$, where $c > 2$ is a constant. Prove that there are two positive constants c_1 and c_2 so that with probability $1 - o_n(1)$, all degrees of the random graph $G(n, p)$ are in the interval $[c_1 \ln n, c_2 \ln n]$. Also show that the statement does not hold for $c = 1$.

Proof by Heather: Suppose that $p = \frac{c \ln n}{n}$, where $c > 2$ is a constant. Prove that there are two positive constants c_1 and c_2 so that with probability $1 - o_n(1)$, all degrees of the random graph $G(n, p)$ are in the interval $[c_1 \ln n, c_2 \ln n]$. Also show that the statement does not hold for $c = 1$.

Label the vertices $\{1, 2, \ldots, n\}$ in $G = G(n, p)$. Fix a vertex i. For each $j \neq i$, Let X^i_j be the event that $ij \in E(G)$. Then $X^i = \sum_{j \neq i} X^i_j$ is the degree of vertex i in G. Observe

$$\mathbb{E}(X^i) = (n-1)p = \frac{c(n-1) \ln n}{n}.$$
Since \(\Pr(X_j = 1) = p \) and \(\Pr(X_j = 0) = 1 - p \), the Chernoff inequality,

\[
\Pr(X^i < E(X^i) - \lambda) \leq e^{-\frac{\lambda^2}{2E(X^i)}}.
\]

First observe \(\left(\frac{1}{2} + \frac{1}{c} \right)^{1/2} < 1 \) since \(c > 2 \). Pick \(s \in \left(\left(\frac{1}{2} + \frac{1}{c} \right)^{1/2}, 1 \right) \).

Let \(\gamma := \left(\frac{c^2}{2} + c \right)^{1/2} \) Let \(c_1 := sc - \gamma \) which is positive by the choice of \(s \). Observe

\[
\Pr(X^i < c_1 \ln n) = \Pr(X^i < sc \ln n - \gamma \ln n)
\]

\[
\leq \Pr\left(X^i < \frac{n-1}{n} \ln n - \gamma \ln n \right)
\]

for all \(n \) suff. large so that \(\frac{n-1}{n} > s \)

\[
\leq e^{-\frac{c^2 (n-1) \ln n}{2c(n-1) \ln n}}
\]

\[
\leq e^{-\frac{\gamma^2 \ln n}{2c}}
\]

\[
= e^{-\frac{(\frac{c^2}{2} + c) \ln n}{2}}
\]

\[
= n^{-\frac{c}{4} - \frac{1}{2}}.
\]

Let \(A_i \) be the event that vertex \(i \) has degree less than \(c_1 \ln n \). Therefore, the probability that all vertices have degree at least \(c_1 \ln n \) is equal to \(\Pr(\bigwedge_{i=1}^n \overline{A_i}) \). Additionally, notice that each \(A_i \) is a monotone decreasing event. Therefore, by the FKG inequality:

\[
\Pr\left(\bigwedge_{i=1}^n \overline{A_i} \right) \geq \prod_{i=1}^n \Pr(\overline{A_i})
\]

\[
= \prod_{i=1}^n \left(1 - \Pr(A_i) \right)
\]

\[
\geq \left(1 - n^{-\frac{c}{4} - \frac{1}{2}} \right)^n
\]

\[
= \left(1 - \frac{1}{n^{\frac{c}{4} + \frac{1}{2}}} \right)^{n^{\frac{c}{4} + \frac{1}{2} + \frac{1}{2} - \frac{c}{4}}}
\]

\[
e^{-n^{\frac{1}{2} - \frac{c}{4}}}
\]

\[
= \frac{1}{e^{n^{\frac{1}{2} - \frac{c}{4}}}}
\]

\[
\rightarrow 1 \quad \text{since} \quad \frac{1}{2} - \frac{c}{4} < 0
\]
Therefore the probability that all vertices have degree at least \(c_1 \ln n \) is at least \(1 - o(1) \). Equivalently, the probability that some vertex has degree less than \(c_1 \ln n \) is \(o(1) \).

For the other bound, define \(d := \frac{1+\sqrt{1+18c_3}}{3} \). Let \(c_2 := c + d > 0 \).

Consider the following:

\[
\Pr(X^i > c_2 \ln n) = \Pr\left(X^i > c \ln n - d \ln n\right)
\leq \Pr\left(X^i > \frac{n-1}{n}c \ln n + d \ln n\right) \quad \text{since } \frac{n-1}{n} < 1
\leq e^{-\frac{d^2(n-1)c \ln n + d \ln n}{2n^2}}
\leq e^{-\frac{d^2 \ln n}{n(2c+4d)}}
= n^{-\frac{2ad^2}{(n-1)c + 2ad^2}}.
\]

Let \(B_i \) be the event that vertex \(i \) has degree greater than \(c_2 \ln n \). If we can show \(\Pr\left(\bigwedge_{i=1}^n B_i\right) \geq 1 - o(1) \) then \(\Pr\left(\bigvee_{i=1}^n B_i\right) \leq o(1) \). So the probability that all vertices have degree in \([c_1 \ln n, c_2 \ln n]\) is

\[
\Pr\left(\bigwedge_{i=1}^n \overline{A_i} \land \bigwedge_{i=1}^n B_i\right) = 1 - \Pr\left(\bigvee_{i=1}^n A_i \lor \bigvee_{i=1}^n B_i\right)
\geq 1 - \Pr\left(\bigvee_{i=1}^n A_i\right) - \Pr\left(\bigvee_{i=1}^n B_i\right)
\geq 1 - o(1).
\]

\(\square\)