INTRO to TOPOLOGY

Neighborhood (NBHD)

Setup:

\[S, G, F, K \subseteq \mathbb{R} \text{ and } \varepsilon > 0 \text{ and } x, y \in \mathbb{R} \]

\[
N_\varepsilon(x_0) \overset{\text{NTN}}{=} \text{\$-
NBHD of } x_0 \overset{\text{def}}{=} \{ y \in \mathbb{R} : |x_0 - y| < \varepsilon \} = (x_0 - \varepsilon, x_0 + \varepsilon) \\
N'_\varepsilon(x_0) \overset{\text{NTN}}{=} \text{deleted } \varepsilon\text{-NBHD of } x_0 \overset{\text{def}}{=} \{ y \in \mathbb{R} : 0 < |x_0 - y| < \varepsilon \} = N_\varepsilon(x_0) \setminus \{x_0\} = (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon)
\]

\[S \text{ is a NBHD of } x_0 \overset{\text{def}}{=} \exists \varepsilon > 0 \text{ s.t. } N_\varepsilon(x_0) \subseteq S \]

DEFINITIONS AND NOTATION

\[x_0 \text{ is an interior point of } S \overset{\text{NTN}}{\iff} x_0 \in S^o \overset{\text{def}}{=} \exists \varepsilon > 0 \text{ s.t. } N_\varepsilon(x_0) \subseteq S \]

\[x_0 \text{ is a limit point of } S \overset{\text{NTN}}{\iff} x_0 \in S' \overset{\text{def}}{=} \forall \varepsilon > 0 : N_\varepsilon(x_0) \cap S \neq \emptyset \]

\[x_0 \text{ is a boundary point of } S \overset{\text{NTN}}{\iff} x_0 \in \partial S \overset{\text{def}}{=} \forall \varepsilon > 0 : N_\varepsilon(x_0) \cap S \neq \emptyset \text{ and } N_\varepsilon(x_0) \cap S^C \neq \emptyset \]

\[x_0 \text{ is an isolated point of } S \overset{\text{def}}{=} \{x_0 \in S\} \text{ and } \exists \varepsilon > 0 \text{ s.t. } N_\varepsilon(x_0) \cap S = \emptyset \iff \exists \varepsilon > 0 \text{ s.t. } N_\varepsilon(x_0) \cap S = \{x_0\} \]

\[x_0 \text{ is an exterior point to } S \overset{\text{def}}{=} x_0 \in (S^C)^o \]

\[\text{the boundary of } S \overset{\text{NTN}}{=} \partial S \overset{\text{def}}{=} \text{the set of all boundary points of } S \]

\[\text{the closure of } S \overset{\text{NTN}}{=} \overline{S} \overset{\text{def}}{=} S \cup \partial S \]

\[\text{the interior of } S \overset{\text{NTN}}{=} S^o \overset{\text{def}}{=} \text{the set of all interior points of } S \]

\[\text{the exterior of } S \overset{\text{NTN}}{=} (S^C)^o \overset{\text{def}}{=} \text{the interior of the complement of } S \]

OPEN and CLOSED

\[G \text{ is open } \overset{\text{def}}{=} \text{each point in } G \text{ is an interior point of } G \iff \forall x \in G \exists \varepsilon > 0 \text{ s.t. } N_\varepsilon(x) \subseteq G \]

\[F \text{ is closed } \overset{\text{def}}{=} F^c \overset{\text{def}}{=} \mathbb{R} \setminus F \text{ is an open set} \]

THEOREMS

Let \(\Gamma \) be an arbitrary indexing set and \(n \in \mathbb{N} \).

OPEN:

Let \(\{G_\gamma\}_{\gamma \in \Gamma} \) and \(\{G_i\}_{i=1}^n \) be collections of open subsets of \(\mathbb{R} \). Then:

\[
\bigcup_{\gamma \in \Gamma} G_\gamma \text{ is open and } \bigcap_{i=1}^n G_i \text{ is open}.
\]

CLOSED:

Let \(\{F_\gamma\}_{\gamma \in \Gamma} \) and \(\{F_i\}_{i=1}^n \) be collections of closed subsets of \(\mathbb{R} \). Then:

\[
\bigcap_{\gamma \in \Gamma} F_\gamma \text{ is closed and } \bigcup_{i=1}^n F_i \text{ is closed}.
\]

RECALL:

\[
x \in \bigcup_{\gamma \in \Gamma} G_\gamma \overset{\text{def}}{\iff} \exists \gamma \in \Gamma \text{ s.t. } x \in G_\gamma
\]

\[
x \in \bigcap_{\gamma \in \Gamma} F_\gamma \overset{\text{def}}{\iff} \forall \gamma \in \Gamma \text{ : } x \in F_\gamma
\]

MORE THEOREMS

- Let \(x \in S \). Then \(x \) is either an isolated point or a limit point of \(S \) (but not both).
- \(S \) is closed \(\iff \) \(S \) contains all its limit points \(\iff \) \(S^c \subseteq S \).
(1) interior of \(S \) \(\overset{\text{NTN}}{=} S^o \) def. = set of interior points of \(S \)
(2) \(S^o \) is open
(3) \(S^o \subset S \)
(4) \(S^o = S \iff S \) is open
(5) \(S^o = \bigcup \{G \subset \mathbb{R} : G \text{ is open and } G \subset S\} \)
= the largest open set “inside of” \(S \)
= the largest open set contained in \(S \)

(1) closure of \(S \) \(\overset{\text{NTN}}{=} \overline{S} \) def. = \(S \cup \partial S \) \(\overset{\text{thm}}{=} S \cup S' \)
(2) \(\overline{S} \) is closed
(3) \(S \subset \overline{S} \)
(4) \(S = \overline{S} \iff S \) is closed
(5) \(\overline{S} = \bigcap \{F \subset \mathbb{R} : F \text{ is closed and } S \subset F\} \)
= the smallest closed set that “sits on top of” \(S \)
= the smallest closed set that contains \(S \)

COMPACT SETS

• A collection

\[\mathcal{C} = \{G_\gamma\}_{\gamma \in \Gamma} \]

of subsets of \(\mathbb{R} \) is an OPEN COVERING of \(S \) if each \(G_\gamma \) is open and the \(G_\gamma \)'s cover \(S \) in the sense that

\[S \subset \bigcup_{\gamma \in \Gamma} G_\gamma . \]

If

\[\tilde{\mathcal{C}} = \{G_\gamma\}_{i=1}^n \subset \mathcal{C} , \]

where \(n \in \mathbb{N} \), and

\[S \subset \bigcup_{i=1}^n G_{\gamma_i} \]

then \(\tilde{\mathcal{C}} \) is a FINITE SUBCOVERING of \(S \) (of the covering \(\mathcal{C} \)).

• \(K \) is COMPACT \(^9\) if each open covering of \(K \) has a finite subcovering of \(K \). So:

\[K \text{ is compact } \iff \forall \text{ open covering } \mathcal{C} \text{ of } K \exists \text{ finite subcovering } \tilde{\mathcal{C}} \text{ of } K . \]

HEINE-BOREL THEOREM \(^{10}\)

Let \(S \subset \mathbb{R} \).

Each open covering of \(S \) has a finite subcovering if and only if \(S \) is closed and bounded.

In other words:

\[S \text{ is compact } \iff S \text{ is closed and bounded} . \]

BOLZANO-WEIERSTRASS THEOREM \(^{11}\)

Each bounded infinite subset of \(\mathbb{R} \) has at least one limit point.

\(^8\)Pages 25 – 27

\(^9\)Equivalent to, but varies from, book’s def.. Book’s def. is “a compact set is a closed and bounded set”.

\(^{10}\)\(\iff \) is Thm. 1.3.7. \(\Rightarrow \) is Exercise 1.3.21.

\(^{11}\)Thm. 1.3.8