Supremum and Infimum of a Set

Summary

Set up
- \(S \subset \mathbb{R} \)
- \(\mathbb{R} \) is the set of real numbers
- \(\hat{\mathbb{R}} := \mathbb{R} \cup \{\infty\} \cup \{-\infty\} \) is the set of extended real numbers

Supremum of \(S = \sup S \)
also called
Least Upper Bound of \(S = \text{lub} S \)

Def.'s
- Let \(S \) be a nonempty set that is bounded above. Then \(\beta \in \mathbb{R} \) is a sup \(S \) provided
 1. \(\beta \) is an upper bound of \(S \) (i.e., \(\forall x \in S, \ x \leq \beta \))
 2. if \(b < \beta \), then \(b \) is not an upper bound of \(S \).
- Let \(S \) be a nonempty set that is not bounded above. Then \(\sup S := \infty \).
- \(\sup \emptyset := -\infty \).

Thm. Let \(S \) be a nonempty set that is bounded above. Then the sup \(S \) is the unique real number \(\beta \in \mathbb{R} \) such that
 1. \(\beta \) is an upper bound of \(S \) (i.e., \(\forall x \in S, \ x \leq \beta \))
 2. if \(b < \beta \), then \(b \) is not an upper bound of \(S \)
 2\(' \) if \(b < \beta \), then \(\exists x_b \in S \) such that \(b < x_b \)
 2\('' \) if \(\varepsilon > 0 \), then \(\exists x_\varepsilon \in S \) such that \(\beta - \varepsilon < x_\varepsilon \)
 2\(''' \) if \(\varepsilon > 0 \), then \(\exists x_\varepsilon \in S \) such that \(\beta - 17\varepsilon < x_\varepsilon \).

Summary \(\sup S \in \hat{\mathbb{R}} \).
 1. \(\sup S \in \mathbb{R} \) if and only if \(S \) is nonempty and bounded above.
 2. \(\sup S = \infty \) if and only if \(S \) is nonempty and not bounded above.
 3. \(\sup S = -\infty \) if and only if \(S = \emptyset \).

Infimum of \(S = \inf S \)
also called
Greatest Lower Bound of \(S = \text{glb} S \)

Def.'s
- Let \(S \) be a nonempty set that is bounded below. Then \(\alpha \in \mathbb{R} \) is an inf \(S \) provided
 1. \(\alpha \) is a lower bound of \(S \) (i.e., \(\forall x \in S, \ x \geq \alpha \))
 2. if \(a < \alpha \), then \(a \) is not a lower bound of \(S \).
- Let \(S \) be a nonempty set that is not bounded below. Then \(\inf S := -\infty \).
- \(\inf \emptyset := \infty \).

Thm. Let \(S \) be a nonempty set that is bounded below. Then the inf \(S \) is the unique real number \(\alpha \in \mathbb{R} \) such that
 1. \(\alpha \) is a lower bound of \(S \) (i.e., \(\forall x \in S, \ x \geq \alpha \))
 2. if \(a < \alpha \), then \(a \) is not a lower bound of \(S \)
 2\(' \) if \(\varepsilon > 0 \), then \(\exists x_a \in S \) such that \(x_a < a \)
 2\('' \) if \(\varepsilon > 0 \), then \(\exists x_\varepsilon \in S \) such that \(x_\varepsilon < \alpha + \varepsilon \)
 2\(''' \) if \(\varepsilon > 0 \), then \(\exists x_\varepsilon \in S \) such that \(x_\varepsilon < \alpha + 17\varepsilon \).

Summary \(\inf S \in \hat{\mathbb{R}} \).
 1. \(\inf S \in \mathbb{R} \) if and only if \(S \) is nonempty and bounded below.
 2. \(\inf S = -\infty \) if and only if \(S \) is nonempty and not bounded below.
 3. \(\inf S = \infty \) if and only if \(S = \emptyset \).