Do parts (a) - (i) for the following three problems.

1. \(f(x) = \cos(17x) \quad x_0 = 0 \quad J = (-\infty, \infty) = \mathbb{R}^+ \)
2. \(f(x) = (1 + x)^{-3} \quad x_0 = 0 \quad J = \left(0, \frac{1}{2} \right) \)
3. \(f(x) = e^x \quad x_0 = 17 \quad J = (16, 19) \)

You might find it easier to do problems (a) - (i) in a different order. Just do what you find easiest.

Use only:
- the definition of Taylor polynomial
- the definition of Taylor series
- the theorem/error-estimate on the \(N^{th} \)-Remainder term for Taylor polynomials.

Do NOT use a known Taylor Series (i.e., do not use methods from section 10.10).

2a. Find the following. Note the first column are functions of \(x \) and the second column are numbers.

\(f^{(0)}(x) = \)	\((1 + \chi)^{-3} = \frac{1}{2} \)	\(f^{(0)}(x_0) = 1 \)
\(f^{(1)}(x) = -3 \)	\((1 + \chi)^{-4} = -\frac{3}{2} \)	\(f^{(1)}(x_0) = -3 \)
\(f^{(2)}(x) = +3.4 \)	\((1 + \chi)^{-5} = \frac{4}{2} \)	\(f^{(2)}(x_0) = +3.4 \)
\(f^{(3)}(x) = -3.45 \)	\((1 + \chi)^{-6} = -\frac{5}{2} \)	\(f^{(3)}(x_0) = -3.45 \)
\(f^{(4)}(x) = +3.456 \)	\((1 + \chi)^{-7} = +\frac{6}{2} \)	\(f^{(4)}(x_0) = +3.456 \)

2b. Find the \(N^{th} \)-order Taylor polynomial of \(y = f(x) \) about \(x_0 \) in OPEN form for \(N = 0, 1, 2, 3, 4 \).

\(P_0(x) = 1 \)
\(P_1(x) = -3 \chi \)
\(P_2(x) = -3 \chi + \frac{3.4}{2} \chi^2 \)
\(P_3(x) = -3 \chi + \frac{3.4}{2} \chi^2 - \frac{3.45}{2} \chi^3 \)
\(P_4(x) = -3 \chi + \frac{3.4}{2} \chi^2 - \frac{3.45}{2} \chi^3 + \frac{3.4.5.6}{4!} \chi^4 \)

As for the order in which to do parts (c), (d), (e).
I think it is easiest to do
(1) (1c) → (1d) → (1e) but for (2) : (2e) → (2d) → (2c).
2c. Find the Taylor series of $y = f(x)$ about x_0 in OPEN form.

$$P_n(x) = 1 - 3x + \frac{(3)(4)}{2} x^2 - \frac{(4)(5)}{2} x^3 + \frac{(5)(6)}{2} x^4 - \frac{(6)(7)}{2} x^5 + \ldots$$

2d. Find the Taylor series of $y = f(x)$ about x_0 in CLOSED form.

$$P_n(x) = \sum_{n=0}^{\infty} (-1)^n \frac{(n+1)(n+2)}{2} x^n$$

2e. Find the nth Taylor coefficient of $y = f(x)$ about x_0.

$$c_n = (-1)^n \frac{(n+1)(n+2)}{2}$$

Let make a chart to figure out c_n.

<table>
<thead>
<tr>
<th>n</th>
<th>c_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$-\frac{3}{1!}$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{3 \cdot 4}{2!}$</td>
</tr>
<tr>
<td>3</td>
<td>$-\frac{3 \cdot 4 \cdot 5}{3!}$</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{3 \cdot 4 \cdot 5 \cdot 6}{4!}$</td>
</tr>
<tr>
<td>5</td>
<td>$-\frac{3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}{5!}$</td>
</tr>
</tbody>
</table>

Also works

$$(-1)^n \frac{(n+1)(n+2)}{2}$$
2f. Find the interval of convergence \(I \) of the Taylor series of \(y = f(x) \) about \(x_0 \). Recall, the interval of convergence is the set of points for which the series converges, either absolutely or conditionally. (Hint: use the ratio or root test and then check the endpoints.)

\[I = (-1, 1) \]

\[
\mathbb{P}_n(x) = \sum_{n=0}^{\infty} (-1)^n \frac{(n+1)(n+2)}{2} x^n
\]

\[
\rho(n+1)(n+3) x^{n+1} - \frac{2}{(n+1)(n+2)} x^n
\]

\[
= 1 \times \lim_{n \to \infty} \frac{n+3}{n+1} = |x| - 1 < 1
\]

Check endpoints:

\[
\sum_{n=0}^{\infty} (-1)^n \frac{(n+1)(n+2)}{2} (-1)^n = \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} [(-1)^n (-1)^n] = \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2}
\]

\[
\sum_{n=0}^{\infty} (-1)^n \frac{(n+1)(n+2)}{2} (1)^n = \sum_{n=0}^{\infty} \frac{(-1)^n (n+1)(n+2)}{2}
\]

\[
\lim_{n \to \infty} \left| (\pm 1)^n \frac{(n+1)(n+2)}{2} \right| = \frac{1}{2} \lim_{n \to \infty} \frac{(n+1)(n+2)}{2} = \infty
\]

To have divergence at both ends, by the nth term test.
2g. Consider the given interval J and fix an $N \in \mathbb{N}$. Find an upper bound for the maximum of $|f^{(N+1)}(x)|$ on the interval J. You answer can have an N in it but it cannot have an x, x_0, c. (Note that J is a subset of I but Prof. G. might have picked a smaller J than I to make the problem easier.)

\[
\max_{c \in J} |f^{(N+1)}(c)| \leq \frac{(N+3)!}{2}
\]

\[(2a) \implies f^{(N)}(x) = (-1)^n \frac{(n+2)!}{2} (1+x)^{-(n+3)} \quad \text{So} \quad 0 < c < \frac{1}{2}
\]

\[|f^{(N+1)}(c)| \leq \left| (-1)^{N+1} \frac{(N+1)!}{2} (1+c)^{-(N+3)} \right|
\]

\[= \frac{(N+3)!}{2} \frac{1}{(1+c)^{N+4}} \leq \frac{(N+3)!}{2} \frac{1}{(1+0)^{N+4}} = \frac{(N+3)!}{2}
\]

\[0 < c < \frac{1}{2} \implies 1 < 1+c < \frac{3}{2} \implies |N+1| \leq (1+c)^{N+4} \leq \left(\frac{3}{2} \right)^{N+4}
\]

2h. Consider the given interval J and fix an $N \in \mathbb{N}$. For each $x \in J$, find an upper bound for the maximum of $|R_N(x)|$.

You answer can have an N and x in it but it cannot have an: x_0, c.

\[|R_N(x)| \leq \frac{(N+2)(N+3)}{2} |x|^{N+1}
\]

\[R_N(x) \leq \max_{c \in J} |f^{(N+1)}(c)| \cdot \frac{|x|^{N+1}}{(N+1)!}
\]

\[\leq \frac{1}{2} \frac{(N+3)!}{(N+1)!} \cdot |x|^{N+1} = \frac{(N+2)(N+3)}{2} |x|^{N+1}
\]
2i. Carefully show that \(f(x) = P_n(x) \) for each \(x \) in the given interval \(J \) by showing that \(\lim_{N \to \infty} |R_N(x)| = 0 \) for each \(x \in J \).

Let \(x \in J \). So \(0 < x < \frac{1}{2} \). So

\[
|R_N(x)| \leq \frac{(N+2)(N+3)}{2} |x|^{N+1}
\]

\[
\leq \left(\frac{N+2}{N+3} \right) \left(\frac{1}{2} \right)^{N+1}
\]

\[
= \frac{1}{2^3} \frac{(N+2)(N+3)}{2^N}
\]

\[
\xrightarrow{N \to \infty} 0
\]

\text{Way #1: L'Hôpital}

\[
\lim_{N \to \infty} \frac{(N+2)(N+3)}{2^N} = \lim_{N \to \infty} \frac{N^2 + 5N + 6}{2^N}
\]

\[
\xrightarrow{\text{L'Hôpital}} \lim_{N \to \infty} \frac{2N + 5}{2^N (\ln 2)}
\]

\[
\xrightarrow{N \to \infty} 0
\]

\text{Way #2: Helpful Intuition}

\[
0 \leq \frac{(N+2)(N+3)}{2^N} \leq \frac{(N+2)(N+3)}{N^3}
\]

\[
\xrightarrow{N \to \infty} 0
\]

So \(\lim_{N \to \infty} |P_n(x)| = 0 \)