INSTRUCTIONS

(1) On problem 0, fill in the provided box and/or line.
(2) Now for the multiple choice problems 1 through 14.
 • First, indicate (to yourself) your answers directly on the STATEMENT OF MULTIPLE
 CHOICE PROBLEMS part.
 • Once finished with the multiple choice problems, go back to the HAND IN PART and indicate
 your answers on the table provided. You can take the STATEMENT OF MULTIPLE CHOICE
 PROBLEMS part home with you.
(3) The mark box indicates the problems along with their points.
 Check that your copy of the exam has all of the problems.
(4) You may not use: electronic devices, books, personal notes.
(5) During this exam, do not leave your seat unless you have permission. If you have a question, raise
 your hand. When you finish: put your pencil down and raise your hand.
(6) If you do not make at least half of the points on Problem 0, then your score for the entire exam
 will be whatever you made on Problem 0.
(7) This exam covers (from Calculus by Stewart, 6th ed., ET):
 11.9–11.11, 6.1–6.3.

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the
University of South Carolina’s Honor Code.

As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.

I understand that if it is determined that I used any unauthorized assistance or otherwise violated the University’s
Honor Code then I will receive a failing grade for this course and be referred to the academic Dean and the Office of
Academic Integrity for additional disciplinary actions.

Furthermore, I have not only read but will also follow the above Instructions.

Signature: __________________________
0. Fill in: the boxes in problem 0A and the lines in problem 0B.

0A. Taylor/Maclaurin Polynomials and Series

Let \(y = f(x) \) be a function with derivatives of all orders in an interval \(I \) containing \(x_0 \).
Let \(y = P_N(x) \) be the \(N^{th} \)-order Taylor polynomial of \(y = f(x) \) about \(x_0 \).
Let \(y = R_N(x) \) be the \(N^{th} \)-order Taylor remainder of \(y = f(x) \) about \(x_0 \).
Let \(y = P_\infty(x) \) be the Taylor series of \(y = f(x) \) about \(x_0 \).
Let \(c_n \) be the \(n^{th} \) Taylor coefficient of \(y = f(x) \) about \(x_0 \).

In open form (i.e., with \(... \) and without a \(\sum \)-sign)

\[
P_N(x) = \]

In closed form (i.e., with a \(\sum \)-sign and without \(... \))

\[
P_N(x) = \]

In open form (i.e., with \(... \) and without a \(\sum \)-sign)

\[
P_\infty(x) = \]

In closed form (i.e., with a \(\sum \)-sign and without \(... \))

\[
P_\infty(x) = \]

We know that \(f(x) = P_N(x) + R_N(x) \). Taylor’s BIG Theorem tells us that, for each \(x \in I \),

\[
R_N(x) = \quad \text{for some } c \text{ between } [\quad] \text{ and } [\quad] .
\]

The formula for \(c_n \) is

\[
c_n = \]

A Maclaurin series is a Taylor series about the center \(x_0 = \)

2
0B. Volume of Revolutions. Let's say we revolve some region in the xy-plane around an axis of revolution so we get a solid of revolution. Next we want to find the volume of this solid of revolution.

- In parts a, fill in the blanks with: x or y.
- In parts b and c, fill in the blanks with a formula involving some of:
 2, π, radius, radius_{big}, radius_{little}, average radius, height, and/or thickness.

▶ Disk/Washer Method. Let’s find the volume of this solid of revolution using the disk or washer method.

a.
If the axis of revolution is:
- the x-axis, or parallel to the x-axis, then we partition the ____-axis.
- the y-axis, or parallel to the y-axis, then we partition the ____-axis.

b. If we use the **disk method**, then the volume of a typical disk is:

If we use the **washer method**, then the volume of a typical washer is:

c. If we partition the z-axis, where z is either x or y, the Δz is the ____________________________ .

▶ Shell Method. Let’s find the volume of this solid of revolution using the shell method.

a.
If the axis of revolution is:
- the x-axis, or parallel to the x-axis, then we partition the ____-axis.
- the y-axis, or parallel to the y-axis, then we partition the ____-axis.

b. If we use the **shell method**, then the volume of a typical shell is:

If we partition the z-axis, where z is either x or y, the Δz is the ____________________________ .
TABLE FOR YOUR ANSWERS TO MULTIPLE CHOICE PROBLEMS 1 – 14

Instructions.

- Indicate (by circling, boxing, or x-ing) your solution to each problem.
- Select at most one response for each problem.
- The scoring is: 6 points for a correct answer, 0 points for an incorrect answer, and 1 point for a blank answer.

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>1b</td>
<td>1c</td>
<td>1d</td>
<td>1e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2a</td>
<td>2b</td>
<td>2c</td>
<td>2d</td>
<td>2e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3a</td>
<td>3b</td>
<td>3c</td>
<td>3d</td>
<td>3e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4a</td>
<td>4b</td>
<td>4c</td>
<td>4d</td>
<td>4e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5a</td>
<td>5b</td>
<td>5c</td>
<td>5d</td>
<td>5e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6a</td>
<td>6b</td>
<td>6c</td>
<td>6d</td>
<td>6e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7a</td>
<td>7b</td>
<td>7c</td>
<td>7d</td>
<td>7e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8a</td>
<td>8b</td>
<td>8c</td>
<td>8d</td>
<td>8e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9a</td>
<td>9b</td>
<td>9c</td>
<td>9d</td>
<td>9e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10a</td>
<td>10b</td>
<td>10c</td>
<td>10d</td>
<td>10e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11a</td>
<td>11b</td>
<td>11c</td>
<td>11d</td>
<td>11e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12a</td>
<td>12b</td>
<td>12c</td>
<td>12d</td>
<td>12e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13a</td>
<td>13b</td>
<td>13c</td>
<td>13d</td>
<td>13e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14a</td>
<td>14b</td>
<td>14c</td>
<td>14d</td>
<td>14e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INSTRUCTIONS for MULTIPLE CHOICE PROBLEMS

• First, indicate (to yourself) your answers directly on the STATEMENT OF MULTIPLE CHOICE PROBLEMS part.
• Once finished with the multiple choice problems, go back to the HAND IN PART and indicate your answers on the table provided. You can take the STATEMENT OF MULTIPLE CHOICE PROBLEMS part home with you.
• Select at most one response for each problem.
• The scoring is: 6 points for a correct answer, 0 points for an incorrect answer, and 1 point for a blank answer.

1. Using a known (commonly used) Taylor series, find the Taylor series for

\[f(x) = \frac{2}{3 - x} \]

about the center \(x_0 = 0 \) and state when this Taylor series is valid. Hint, by simple algebra,

\[f(x) = \frac{2}{3 - x} = \left(\frac{2}{3} \right) \left(\frac{1}{1 - \frac{x}{3}} \right). \]

a. \(\sum_{n=0}^{\infty} \left(\frac{2}{3} \right)^n x^n \), valid for \(|x| < 1 \)
b. \(\sum_{n=0}^{\infty} \frac{1}{3^{n+1}} x^n \), valid for \(|x| < 3 \)
c. \(\sum_{n=0}^{\infty} \frac{2}{3^{n+1}} x^n \), valid for \(|x| < 1 \)
d. \(\sum_{n=0}^{\infty} \frac{2}{3^{n+1}} x^n \), valid for \(|x| < 3 \)
e. none of these

2. Using a known (commonly used) Taylor series, find the Taylor series for

\[f(x) = \frac{1}{(1 - x)^4} \]

about the center \(x_0 = 0 \) which is valid for \(|x| < 1 \). Hint. Start with the Taylor series expansion

\[\frac{1}{1 - x} = \sum_{k=0}^{\infty} x^k \quad \text{valid for } |x| < 1 \]

and differentiate (as many times as needed). Be careful and don’t forget the chain rule:

\[D_x (1 - x)^{-1} = (-1)(1 - x)^{-2} D_x (1 - x) = (-1)(1 - x)^{-2} (-1) = (1 - x)^{-2}. \]

a. \(\sum_{n=0}^{\infty} \frac{(n)(n-1)(n-2)}{6} x^{n-3} \)
b. \(\sum_{n=0}^{\infty} (n)(n-1)(n-2) x^n \)
c. \(\sum_{n=0}^{\infty} \frac{(n+3)(n+2)(n+1)}{6} x^n \)
d. \(\sum_{n=0}^{\infty} (-1)^n \frac{(n+3)(n+2)(n+1)}{6} x^n \)
e. none of these

3. Using a known (commonly used) Taylor series, evaluate \(\int \tan^{-1}(t^2) \, dt \) as a power series.

a. \(C + \sum_{n=0}^{\infty} \frac{(-1)^n t^{4n+3}}{(4n + 3)} \)
b. \(C + \sum_{n=0}^{\infty} \frac{(-1)^n t^{4n+3}}{(2n + 1)(4n + 3)} \)
c. \(C + \sum_{n=0}^{\infty} \frac{(-1)^n t^{4n+2}}{(2n + 3)} \)

d. \(C + \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+2}}{(2n + 1)} \)
e. \(C + \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+3}}{(2n + 3)} \)
4. Find the 3rd order Taylor polynomial for \(f(x) = \frac{1}{x} \) about the center \(x_0 = 2 \).
 a. \(\frac{1}{2} - \frac{1}{4}(x-2) + \frac{1}{8}(x-2)^2 - \frac{1}{16}(x-2)^3 \)
 b. \(\frac{1}{2} - \frac{1}{4}(x-2) + \frac{1}{4}(x-2)^2 - \frac{3}{8}(x-2)^3 \)
 c. \(\frac{1}{2} + \frac{1}{4}(x-2) + \frac{1}{8}(x-2)^2 + \frac{1}{16}(x-2)^3 \)
 d. \(\frac{1}{2} - \frac{1}{4}x + \frac{1}{4}x^2 - \frac{3}{8}x^3 \)
 e. none of these

5. Find the Taylor series for \(f(x) = x^4 - 3x^2 + 1 \) about the center \(x_0 = 1 \).
 a. \((x-1)^4 - 3(x-1)^2 + 1 \)
 b. \(-1 - 2(x-1) + 3(x-1)^2 + 4(x-1)^3 + (x-1)^4 \)
 c. \(-1 - 2(x-1) + 6(x-1)^2 + 24(x-1)^3 + 24(x-1)^4 \)
 d. \(-1 - 2(x-1) + 3(x-1)^2 + 4(x-1)^3 + (x-1)^4 + 2(x-1)^5 \)
 e. none of these

6. Find the Taylor series for \(f(x) = \frac{1}{x^2} \) about the center \(x_0 = 1 \).
 a. \(\sum_{n=0}^{\infty} (-1)^n (n + 1)! x^n \)
 b. \(\sum_{n=0}^{\infty} (-1)^n (n + 1)! (x-1)^n \)
 c. \(\sum_{n=0}^{\infty} (-1)^n (n + 1) (x-1)^n \)
 d. \(\sum_{n=0}^{\infty} (-1)^{n+1} (n + 1) (x-1)^n \)
 e. none of these

7. Consider the function \(f(x) = e^{-x} \) over the interval \((7, 9)\). The 5th order Taylor polynomial of \(y = f(x) \) about the center \(x_0 = 0 \) is:
 \[P_5(x) = \sum_{n=0}^{5} \frac{(-x)^n}{n!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{x^5}{5!} . \]
 The 5th order Remainder term \(R_5(x) \) is defined by \(R_5(x) = f(x) - P_5(x) \) and so \(e^{-x} \approx P_5(x) \) where the approximation is within an error of \(|R_5(x)| \). Using Taylor’s (BIG) Theorem, find a good upper bound for \(|R_5(x)| \) that is valid for each \(x \in (-1, 3) \).
 a. \(\frac{e^{-7}(9^5)}{5!} \)
 b. \(\frac{e^{-9}(9^5)}{5!} \)
 c. \(\frac{(e^{-7})(9^6)}{6!} \)
 d. \(\frac{(e^{-9})(9^6)}{6!} \)
 e. none of these
Let \(R \) be the region in the first quadrant enclosed by
\[2y = 2 - x \quad \text{and} \quad \text{the } x\text{-axis} \quad \text{and} \quad \text{the } y\text{-axis}. \]

Note that the line \(2y = 2 - x \) goes through the points \((0,1)\) and \((2,0)\).

8. Using the disk/washer method, express as an integral the volume of the solid generated by revolving \(R \) about the \(x \)-axis.
 a. \(\pi \int_0^2 (1 - \frac{x}{2})^2 \, dx \)
 b. \(\pi \int_0^2 (1 - \frac{x}{2})^2 \, dx \)
 c. \(\pi \int_0^1 (2 - 2y)^2 \, dy \)
 d. \(\pi \int_0^1 (2 - 2y)^2 \, dy \)
 e. none of these

9. Using the shell method, express as an integral the volume of the solid generated by revolving \(R \) about the \(x \)-axis.
 a. \(2\pi \int_0^1 y(2 - 2y) \, dy \)
 b. \(2\pi \int_0^2 y(2 - 2y) \, dy \)
 c. \(\pi \int_0^1 (2 - 2y)^2 \, dy \)
 d. \(2\pi \int_0^2 y(2 - 2y)^2 \, dy \)
 e. none of these

10. Using the shell method, express as an integral the volume of the solid generated by revolving \(R \) about the line \(y = 3 \).
 a. \(2\pi \int_0^1 (3 - y)(2 - 2y) \, dy \)
 b. \(2\pi \int_0^3 (3 - y)(2 - 2y) \, dy \)
 c. \(\pi \int_0^1 (3 + y)(2 - 2y) \, dy \)
 d. \(2\pi \int_0^3 (3 + y)(2 - 2y) \, dy \)
 e. none of these
Let R be the region in the first quadrant enclosed by

$$y = x^2 \quad \text{and} \quad y = x + 2 \quad \text{and} \quad \text{the y-axis}.$$

Hint: in the first quadrant, the parabola $y = x^2$ and the line $y = x + 2$ intercept at the point $(2, 4)$.

11. Express the area of R as integral(s) with respect to x.
 a. $\int_0^2 [(x^2) + (x + 2)] \, dx$
 b. $\int_0^2 [(x + 2) + (x^2)] \, dx$
 c. $\int_0^2 [(x^2) - (x + 2)] \, dx$
 d. $\int_0^2 [(x + 2) - (x^2)] \, dx$
 e. none of these

12. Express as an integral, in terms of x, the volume of the solid generated by revolving R about the x-axis.
 a. $\pi \int_0^2 [(x + 2)^2 + (x^2)^2] \, dx$
 b. $\pi \int_0^2 [(x + 2) + (x^2)]^2 \, dx$
 c. $\pi \int_0^2 [(x + 2)^2 - (x^2)^2] \, dx$
 d. $\pi \int_0^2 [(x + 2) - (x^2)]^2 \, dx$
 e. none of these

13. Express the area of R as integral(s) with respect to y.
 a. $\int_0^4 (\sqrt{y} - (y - 2)) \, dy$
 b. $\int_0^4 ((y - 2) - \sqrt{y}) \, dy$
 c. $\int_0^2 \sqrt{y} \, dy + \int_2^4 \sqrt{y} - (y - 2) \, dy$
 d. $\int_0^2 \sqrt{y} \, dy + \int_2^4 (y - 2) - \sqrt{y} \, dy$
 e. none of these

14. Express as integral(s), in terms of y, the volume of the solid generated by revolving R about the x-axis.
 a. $2\pi \int_0^4 y (\sqrt{y} - (y - 2)) \, dy$
 b. $2\pi \int_0^4 y ((y - 2) - \sqrt{y}) \, dy$
 c. $2\pi \int_0^2 y \sqrt{y} \, dy + \int_2^4 \sqrt{y} - (y - 2) \, dy$
 d. $2\pi \int_0^2 y \sqrt{y} \, dy + \int_2^4 (y - 2) - \sqrt{y} \, dy$
 e. none of these