INSTRUCTIONS:

(1) To receive credit you must:
 (a) work in a logical fashion, show all your work, indicate your reasoning;
 no credit will be given for an answer that just appears;
 such explanations help with partial credit
 (b) if a line/box is provided, then:
 — show you work BELOW the line/box
 — put your answer on/in the line/box
 (c) if no such line/box is provided, then box your answer

(2) The MARK BOX indicates the problems along with their points.
 Check that your copy of the exam has all of the problems.

(3) You may use your notes and the textbook. You cannot use each other (i.e., you have to take
 this part solo, without the help of someone else).

(4) This exam covers (from Calculus by Stewart 6th ed, ET): § 11.9, 11.10, 11.11.

Problem Inspiration: just like the homework.

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain
the University of South Carolina’s Honor Code.
As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.
Furthermore, I have not only read but will also follow the above Instructions.
I hereby verify that I did NOT receive help from other people on this take-home exam problem.

Signature:

Due Tuesday November 22, 2011 at the start of class (12:30pm).
No Exceptions!
1. Using the known Taylor Series

\[\ln(1 + t) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} t^n, \quad t \in (-1, 1), \text{ i.e., } -1 < t \leq 1 \]

(as from the handout Commonly Used Taylor Series) and methods from Section 11.9, find a power series expansion (in CLOSED form) for

\[y = \ln(x - 4) \text{ about the center of } x_0 = 5. \]

Hint: \(\ln(x - 4) = \ln[1 + (x - 5)] \). Also, say when this power series expansion is valid.

\[\ln(x - 4) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x - 5)^n \]

which is valid for \(4 < x \leq 6 \).

Just let \(t = x - 5 \)

Good for

\[-1 < x - 5 \leq 1 \]

\[4 < x \leq 6 \]

\[\ln(x-4) = 1(x-5)^1 - \frac{1}{2}(x-5)^2 + \frac{1}{3}(x-5)^3 - \frac{1}{4}(x-5)^4 +/ \cdots \]
2. Do parts (a) - (i) for the following problem.

\[f(x) = \ln(x - 4) \quad x_0 = 5 \quad J = (4.5, 5.5) \]

Remark: from problem (1) you know the interval \(J \) can be larger; Prof. G made \(J \) smaller than it can be to make part (i) easier for you.

You might find it easier to do problems (a) - (i) in a different order. Just do what you find easiest.

On parts (a) - (i), use ideas from only Sections 11.10 and 11.11, i.e., use only:

- the definition of Taylor polynomial
- the definition of Taylor series
- the theorem/error-estimate on the \(N \text{th} \)-Remainder term for Taylor polynomials.

Do NOT use a known Taylor Series (i.e., do not use methods from Section 11.9, this was problem 1).

a. Find the following. Note the first column are functions of \(x \) and the second column are numbers.

<table>
<thead>
<tr>
<th>(f^{(0)}(x))</th>
<th>(f^{(0)}(x_0) = \ln 1 = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f^{(1)}(x) = (x - 4)^{-1})</td>
<td>(f^{(1)}(x_0) = 1)</td>
</tr>
<tr>
<td>(f^{(2)}(x) = -(x - 4)^{-2})</td>
<td>(f^{(2)}(x_0) = -1)</td>
</tr>
<tr>
<td>(f^{(3)}(x) = -2(x - 4)^{-3})</td>
<td>(f^{(3)}(x_0) = 2)</td>
</tr>
</tbody>
</table>

b. Find \(N \text{th} \)-order Taylor polynomial of \(y = f(x) \) about \(x_0 \) in OPEN form for \(N = 0, 1, 2 \).

| \(P_0(x) = 0 \) |
| \(P_1(x) = (x - 5)^1 \) |
| \(P_2(x) = (x - 5)^1 - \frac{1}{2} (x - 5)^2 \) |

\[n \geq 1 : \text{see pattern?} \]

\[f^{(n)}(x) = (-1)^{n-1} \cdot (n-1) ! \cdot (x - 4)^{-n} \]

\[C_n = \frac{f^{(n)}(5)}{n!} = (-1)^{n-1} \frac{(n-1) !}{n !} \cdot (5 - 4)^{-n} = \frac{(-1)^{n-1}}{n} \]

\[\frac{(n-1) !}{n !} = \frac{(n-1) !}{(n-1) ! \cdot n} = \frac{1}{n} \]
c. Find the Taylor series of \(y = f(x) \) about \(x_0 \) in OPEN form.

\[
P_{\infty}(x) = (x-5) - \frac{1}{2} (x-5)^2 + \frac{1}{3} (x-5)^3 - \frac{1}{4} (x-5)^4 + \ldots
\]

d. Find the Taylor series of \(y = f(x) \) about \(x_0 \) in CLOSED form.

\[
P_{\infty}(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-5)^n
\]

e. Find the \(n^{th} \) Taylor coefficient of \(y = f(x) \) about \(x_0 \).

\[
c_n = \frac{(-1)^{n-1}}{n} \quad \text{for } n \geq 1 \quad \text{and} \quad c_0 = 0.
\]

f. Find the interval \(I \) of convergence of the Taylor series \(y = f(x) \) about \(x_0 \). Recall, the interval of convergence is the set of points for which the series converges, either absolutely or conditionally. (Hint: use the ratio or root test and then check the endpoints.)

\[
I = (4, 6]
\]

Ratio Test

\[
p = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n \to \infty} \frac{1}{n+1} \cdot \frac{n}{1} = 1,
\]

Do abs. conv. when \(|x-5| < 1 \), i.e., \(4 < x < 6 \).

Check endpoints

\(x = 6 \) : \(\sum \frac{(-1)^{n-1}}{n} (6-5)^n = \sum \frac{(-1)^{n-1}}{n} \) conditionally conv.

\(x = 4 \) : \(\sum \frac{(-1)^{n-1}}{n} (4-5)^n = \sum \frac{(-1)^{n-1} (-1)^n}{n} = \sum \frac{1}{n} = \sum \frac{1}{n} \) diverges, harmonic series.
g. Consider the given interval J and fix an $N \in \mathbb{N}$. Find a good upper bound for the maximum of $|f^{(N+1)}(c)|$ on the interval J. Your answer can have an N in it but it cannot have an: x, x_0, c.
(Note that J is a subset of I but Prof. G. might have picked a smaller J than I to make the problem easier.)

$$\max_{c \in J} |f^{(N+1)}(c)| \leq \left(\frac{2^{N+1}}{N!} \right)$$

$$f^{(N+1)}(x) \quad \text{part a} \quad \frac{(-1)^N (N)!}{(x - y)^{N+1}}$$

$$\max_{c \in J} \left| f^{(N+1)}(c) \right| = \max_{4.5 < c < 5.5} \frac{N!}{(x - y)^{N+1}} = \frac{N!}{(\frac{1}{2})^{N+1}} = (2^{N+1})(N!)$$

h. Consider the given interval J and fix an $N \in \mathbb{N}$. For each $x \in J$, find a good upper bound for the maximum of $|R_N(x)|$. Your answer can have an N and x in it but it cannot have an: x_0, c.

$$|R_N(x)| \leq \frac{1}{N+1}$$

$$|R_N(x)| = \left| f^{(N+1)}(c) \frac{(x - 5)^{N+1}}{(N+1)!} \right|$$

$$\text{part b} \quad \leq \frac{(2^{N+1})N!}{(N+1)!} \left(\frac{1}{2} \right)^{N+1}$$

$$= \frac{N!}{(N!)^2 (N+1)} \frac{2^{N+1}}{2^{N+1}} = \frac{1}{N+1}$$

$$\text{and} \quad 4.5 < x < 5.5 \quad \frac{1}{2} < x - 5 < \frac{1}{2}$$

$$\quad |x - 5| < \frac{1}{2}$$
i. Carefully show that \(f(x) = P_\infty(x) \) for each \(x \) in the given interval \(J \) by using part (h) and showing that \(\lim_{N \to \infty} |R_N(x)| = 0 \) for each \(x \in J \).

\[x \in J = (4.5, 5.5) \]

\[4.5 < x < 5.5 \]

\[-\frac{1}{2} < x - 5 < \frac{1}{2} \]

\[|x - 5| < \frac{1}{2} \]

\[0 \leq \lim_{N \to \infty} |R_N(x)|^{(\text{part h})} \leq \lim_{N \to \infty} \frac{1}{N+1} = 0 \]

\[\lim_{N \to \infty} |R_N(x)| = 0 \]