Test is two sided.

Rip off this cover page and use it for scratch work.
INSTRUCTIONS:

(1) To receive credit you must:
 (a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that just appears;
 (b) if a line/box is provided, then:
 — show you work BELOW the line/box
 — put your answer on/in the line/box
 (c) if no such line/box is provided, then box your answer

(2) The mark box indicates the problems along with their points.

(3) You may not use an electronic device, a calculator, books, personal notes.

(4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.

(5) This exam covers (from Calculus by Anton, Bivens, Davis 8th ed.):
 Sections 8.1, 8.2, 8.3, 8.4, 8.5, 8.8.

Problem Inspiration: If I told you here, you would know what method to use. So see the solution key, which will be available from the course homepage after the exam.

Hints:

(1) You can check your answers to the indefinite integrals by differentiating.
(2) For more partial credit, box your $u - du$ substitutions.

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina’s Honor Code.

As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam. Furthermore, I have not only read but will also follow the above Instructions.

Signature: ________________________________
1. Fill in the blanks (each worth 1 point).

- \(\int \frac{du}{u} = \square \ |u| + C \)
- If \(a \) is a constant and \(a > 0 \) but \(a \neq 1 \), then \(\int a^u \, du = \square + C \)
- \(\int \cos u \, du = \square + C \)
- \(\int \sin u \, du = \square + C \)
- \(\int \tan u \, du = \square + C \)
- \(\int \cot u \, du = \square + C \)
- \(\int \csc u \, du = \square + C \)
- \(\int \sec u \, du = \square + C \)
- \(\int \sec^2 u \, du = \square + C \)
- \(\int \sec u \tan u \, du = \square + C \)
- \(\int \csc^2 u \, du = \square + C \)
- \(\int \csc u \cot u \, du = \square + C \)
- If \(a \) is a constant and \(a > 0 \) then \(\int \frac{1}{a^2 + u^2} \, du = \square + C \)
- If \(a \) is a constant and \(a > 0 \) then \(\int \frac{1}{\sqrt{a^2 - u^2}} \, du = \square + C \)
- If \(a \) is a constant and \(a > 0 \) then \(\int \frac{1}{w\sqrt{a^2 - u^2}} \, du = \square + C \)
- Partial Fraction Decomposition. If one wants to integrate \(\frac{f(x)}{g(x)} \) where \(f \) and \(g \) are polynomials and \(\text{[degree of } f\text{]} \geq \text{[degree of } g\text{]} \), then one must first do \(\square \)
- Integration by parts formula: \(\int u \, dv = \square \)
- Trig substitution: (recall that the integrand is the function you are integrating)
 - if the integrand involves \(a^2 + u^2 \), then one makes the substitution \(u = \square \)
 - Trig substitution:
 - if the integrand involves \(a^2 - u^2 \), then one makes the substitution \(u = \square \)
 - Trig substitution:
 - if the integrand involves \(u^2 - a^2 \), then one makes the substitution \(u = \square \)
 - trig formula ... your answer should involve trig functions of \(\theta \), and not of \(2\theta \): \(\sin(2\theta) = \square \)
 - trig formula ... your answer should have \(\cos(2\theta) \) in it: \(\cos^2(\theta) = \frac{1}{2} \left(\square \right) \)
 - trig formula ... your answer should have \(\cos(2\theta) \) in it: \(\sin^2(\theta) = \frac{1}{2} \left(\square \right) \)
 - trig formula ... since \(\cos^2 \theta + \sin^2 \theta = 1 \), we know that the corresponding relationship between tangent (i.e., tan) and secant (i.e., sec) is \(\square \)
 - \(\arcsin(-\frac{1}{2}) = \square \) RADIANS. (your answer should be an angle)
2. \[
\int e^{17x} \, dx = + C
\]
$$\int xe^x \, dx = + C$$
\[\int \ln(x + 2) \, dx = \quad + C \]
\[\int \sec^3 x \tan^3 x \, dx = \ + \ C \]
\[\int \frac{x^2}{\sqrt{9-x^2}} \, dx = + \, C \]
7. \[
\int \frac{5x^3 - 3x^2 + 2x - 1}{x^4 + x^2} \, dx = + C
\]

HINT: \(x^4 + x^2 = x^2(x^2 + 1) = (x - 0)^2(x^2 + 1)\)
8. LaPlace Transform (from a homework problem)

A transform is a formula that converts, or transforms, one function into another function.

Consider a function of \(t \), denoted by \(y = f(t) \). The LaPlace Transform of this function \(y = f(t) \) is a (new) function, namely the function

\[
y = L\{f(t)\} (s),
\]

which is a function of \(s \). The formula for the LaPlace Transform of \(y = f(t) \) is

\[
L\{f(t)\} (s) = \int_{t=0}^{t=\infty} e^{-st} f(t) \, dt.
\]

(8)

where, in the integral in (8) above, \(s \) is treated as a constant.

The LaPlace Transform of the function

\[
f(t) = e^{2t}
\]

is the function

\[
L\{f(t)\} (s) = \quad \text{for } s > 2.
\]

Hint: thus, if \(f(t) = e^{2t} \), then by equation (8),

\[
L\{f(t)\} (s) = \int_{t=0}^{t=\infty} e^{-st} f(t) \, dt = \int_{t=0}^{t=\infty} e^{-st} e^{2t} \, dt
\]