1. Find and simplify if necessary.
 1a. $D_x[e^{3x^2+1}]$
 1b. $D_x[\ln(3x^2 + 17)]$
 1c. $D_x[(1 + x)^{2x}]$
 1d. $D_x[\sin^3(4x)]$
 1e. $\frac{d}{dx}e^{\tan x}$
 1f. $\frac{d}{dx}[\ln x]^{2x+3}$
 1g. $D_x[17^{3x^2+1}]$
 1h. $D_x[\ln(\cos(4x))]$

2. Integrate each of the following using an appropriate method.
 2a. $\int \ln x \, dx$
 2b. $\int \sin^2 x \, dx$
 2c. $\int \sin^3 x \, dx$
 2d. $\int x^2 \sin x \, dx$
 2e. $\int \frac{x^3-2x^2+4x+1}{x^3-x^2-x+1} \, dx$
 2f. $\int \frac{x^3}{\sqrt{1-x^2}} \, dx$
 2g. $\int x^2 \arctan x \, dx$
 2h. $\int e^x \cos x \, dx$
 2i. $\int \frac{x}{x^4+4x^2+8} \, dx$
 2j. $\int \frac{x^4+2x^2+2}{x^3+x^2} \, dx$
 2k. $\int \frac{x^2}{\sqrt{4-x^2}} \, dx$
 2l. $\int_0^\infty \frac{dx}{\sqrt{x}}$
 2m. $\int_0^\infty \frac{x}{x^2+1} \, dx$

3. Find the limit.
 3a. $\lim_{x \to \infty} x^\frac{1}{x}$
 3b. $\lim_{n \to \infty} \frac{12n^{17}+188n^7-19n}{4n^{18}-n^9+10}$
 3c. $\lim_{x \to \infty} [1 + \frac{c}{x}]^x$ where c is a constant and $c \neq 0$
 3d. $\lim_{n \to \infty} \frac{n^{17,000}}{e^n}$

4. Let
 $$s_N = \sum_{n=5}^{N} \frac{8(3^n)}{(4^n+2)}$$

 for $N = 5, 6, 7, \ldots$. Find a formula for s_N as we did in class (Thus backing up your formula with algebra. Your formula should not have a \sum sign in it nor have ... in it.) Does the infinite series $\sum_{n=5}^{\infty} \frac{8(3^n)}{(4^n+2)}$ converge or diverge? If it converges, find its sum.
5. Decide if the given series is: absolutely convergent, conditionally convergent, or divergent.

5a. \(\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}} \)

5b. \(\sum_{n=1}^{\infty} (-1)^n \frac{(3^n)n!}{(2n)^n} \)

5c. \(\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + n^2} \)

5d. \(\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{5n} \)

5e. \(\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{10(n+1)} \)

5f. \(\sum_{n=2}^{\infty} (-1)^n \frac{1}{n \ln n} \)

5g. \(\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^4}{2^n} \)

5h. \(\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2 + 1} \)

5i. \(\sum_{n=1}^{\infty} \cos(n\pi) \frac{1}{n} \)

5j. \(\sum_{n=1}^{\infty} (-1)^n \frac{\sin n}{n} \)

5k. \(\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n(n+1)}} \)

5l. \(\sum_{n=1}^{\infty} \frac{(-3)^{n+1}}{n^2} \frac{1}{n^2 + 1} \)

6. Consider the following formal power series. Make a diagram (as we did in class) indicating for which \(x \)'s this series is: absolutely convergent, conditionally convergent, divergent. Indicate your reasoning. Don’t forget to check the endpoints.

6a. \(\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} \)

6b. \(\sum_{n=0}^{\infty} \frac{x^n}{n!} \)

6c. \(\sum_{n=1}^{\infty} \frac{(x-2)^n}{n} \)

6d. \(1 + \frac{x-3}{2} + \frac{(x-3)^2}{2^2} + \frac{(x-3)^3}{3^2} + \ldots + \frac{(x-3)^{n-1}}{(n-1)^2} + \ldots \)

6e. \(\sum_{n=1}^{\infty} \frac{(x+1)^n}{\sqrt{n}} \)

6f. \(\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1} \)

6g. \(\sum_{n=1}^{\infty} n! \frac{(x - 1)^n}{n} \)

7. Recall the geometric series.

\[
\sum_{n=0}^{\infty} r^n = \frac{1}{1 - r}
\]

which is valid for \(|r| < 1 \).

7a. Using the geometric series, find a power series representation for \(f(t) = \frac{1}{9+t} \) about \(t = 0 \) and say when it is valid.

7b. Using the geometric series, find a power series representation for \(g(x) = \frac{7}{9+4x} \) about \(x = 3 \) and say when it is valid.

8. Express as integral(s) the volume of the solid obtained by revolving the given region \(R \) about the given axis of revolution.

8a. \(R \) is the region in the first quadrant bounded by the parabola \(y^2 = 8x \) and the line \(x = 2 \). Axis of revolution is the \(x \)-axis. (disk/washer method)

8b. \(R \) is the region bounded by the parabola \(y^2 = 8x \) and the line \(x = 2 \). Axis of revolution is the \(x \)-axis. (disk/washer method)
8c. R is the region bounded by the parabola $y^2 = 8x$ and the line $x = 2$. Axis of revolution is the y-axis. (disk/washer method)

8d. R is the region bounded by the parabola $y = 4x - x^2$ and the x-axis. Axis of revolution is the line $y = 6$. (disk/washer method)

8e. R is the region bounded by the parabola $y^2 = 8x$ and the line $x = 2$. Axis of revolution is the line $x = 2$. (shell method)

8f. R is the region bounded by the circle $x^2 + y^2 = 4$. Axis of revolution is the line $x = 3$. (shell method)

8g. R is the region bounded by $y = -x^2 - 3x + 6$ and $x + y - 3 = 0$. Axis of revolution is: (a) the line $x = 3$, and (b) the line $y = 0$. (you choose the method).

9. WORK: For units of let’s use in.-lb. where distance is in inches (in.) and force is in pound (lb).

 Hooke’s Law: Under appropriate conditions a spring that is stretched x units beyond its natural length pulls back with a force $F(x) = kx$ where k is a (positive) constant (called the spring constant or spring stiffness).

9a. When a particle is located at a distance x inches from the origin, a force of $F(x) = x^2 + 2x$ pounds acts on it. How much work is done in moving it from $x = 1$ to $x = 3$?

9b. A force of 9 pounds is required to stretch a spring from its natural length of 6 inches to a length of 8 inches.

 (a) Find the work done in stretching the spring from its natural length to a length of 10 inches.

 (b) Find the work done in stretching the spring from a length of 7 inches to a length of 9 inches.

10. Express the length following curves as integral(s).

10a. The curve $y = x^{3/2}$ from $x = 0$ to $x = 5$.

10b. The curve $x = 3y^{3/2} - 1$ from $y = 0$ to $y = 4$.

10c. The arc $24xy = x^4 + 48$ from $x = 2$ to $x = 4$.

10d. The arc of the catenary $y = \frac{1}{2}a(e^{x/a} + e^{-x/a})$ from $x = 0$ to $x = a$.

10e. The curve $x = t^2$, $y = t^3$ from $t = 0$ to $t = 4$.

10f. The cycloid $x = \theta - \sin\theta$, $y = 1 - \cos\theta$ for $\theta = 0$ to $\theta = 2\pi$.