INSTRUCTIONS:

(1) To receive credit you must:
 (a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that just appears;
 such explanations help with partial credit
 (b) if a line/box is provided, then:
 — show you work BELOW the line/box
 — put your answer on/in the line/box
 (c) if no such line/box is provided, then box your answer
(2) The MARK BOX indicates the problems along with their points. Check that your copy of the exam has all of the problems.
(3) You may not use a calculator, books, personal notes.
(4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
(5) This exam covers (from Calculus by Anton, Bivens, Davis 8th ed.):
 Ch. 7, 8, 10, § 11.1 - 11.3.

Problem Inspiration: See the answer key.

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina’s Honor Code.
As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam. Furthermore, I have not only read but will also follow the above Instructions.

Signature: ___________________________
1. Fill in the blanks.

1a. \(\int \frac{du}{u} = \) \(|u| + C \)

1b. If \(a \) is a constant and \(a > 0 \) but \(a \neq 1 \), then \(\int a^n \, du = \) \(\frac{1}{1-n} a^n + C \)

1c. \(\int \cos u \, du = \) \(\sin u + C \)

1d. \(\int \sec^2 u \, du = \) \(\tan u + C \)

1e. \(\int \sec u \tan u \, du = \) \(\sec u + C \)

1f. \(\int \sin u \, du = \) \(-\cos u + C \)

1g. \(\int \csc^2 u \, du = \) \(-\cot u + C \)

1h. \(\int \csc u \cot u \, du = \) \(-\csc u + C \)

1i. \(\int \tan u \, du = \) \(\sec u + C \)

1j. \(\int \cot u \, du = \) \(-\ln |\sin u| + C \)

1k. \(\int \sec u \, du = \) \(\ln |\sec u + \tan u| + C \)

1l. \(\int \csc u \, du = \) \(-\ln |\csc u + \cot u| + C \)

1m. If \(a \) is a constant and \(a > 0 \) then \(\int \frac{1}{\sqrt{a^2 - u^2}} \, du = \) \(\arcsin \left(\frac{u}{a} \right) + C \)

1n. If \(a \) is a constant and \(a > 0 \) then \(\int \frac{1}{a^2 + u^2} \, du = \) \(\frac{1}{a} \arctan \left(\frac{u}{a} \right) + C \)

1o. If \(a \) is a constant and \(a > 0 \) then \(\int \frac{1}{u\sqrt{a^2 - u^2}} \, du = \) \(\frac{1}{a} \ln |u + \sqrt{a^2 - u^2}| + C \)

1p. Partial Fraction Decomposition. If one wants to integrate \(\frac{f(x)}{g(x)} \) where \(f \) and \(g \) are polynomials and \([\text{degree of } f] \geq [\text{degree of } g]\), then one must first do \(\text{___________________________} \)

1q. Integration by parts formula: \(\int u \, dv = \) \(uv - \int v \, du \)

1r. Trig substitution: (recall that the integrand is the function you are integrating)

if the integrand involves \(a^2 - u^2 \), then one makes the substitution \(u = \) \(\text{___________________________} \)

1s. Trig substitution:

if the integrand involves \(a^2 + u^2 \), then one makes the substitution \(u = \) \(\text{___________________________} \)

1t. Trig substitution:

if the integrand involves \(u^2 - a^2 \), then one makes the substitution \(u = \) \(\text{___________________________} \)

1u. trig formula ... your answer should involve trig functions of \(\theta \), and not of \(2\theta \): \(\sin(2\theta) = \) \(\text{___________________________} \)

1v. trig formula ... \(\cos(2\theta) \) should appear in the numerator: \(\cos^2(\theta) = \) \(\frac{1}{2} \text{___________________________} \)

1w. trig formula ... \(\cos(2\theta) \) should appear in the numerator: \(\sin^2(\theta) = \) \(\frac{1}{2} \text{___________________________} \)

1x. trig formula ... since \(\cos^2 \theta + \sin^2 \theta = 1 \), we know that the corresponding relationship between tangent (i.e., tan) and secant (i.e., sec) is \(\text{___________________________} \)

1y. \(\arcsin \left(-\frac{1}{2} \right) = \) \(\text{___________________________} \) RADIANS. (your answer should be an angle)
2. Fill-in-the blanks/boxes. All series \sum are understood to be $\sum_{n=1}^{\infty}$.

Hint: I do NOT want to see the words absolute nor conditional on this page!

2a. n^{th}-term test for an arbitrary series $\sum a_n$.
 If $\lim_{n\to\infty} a_n \neq 0$ or $\lim_{n\to\infty} a_n$ does not exist, then $\sum a_n$ __________.

2b. Geometric Series where $-\infty < r < \infty$. The series $\sum r^n$
 • converges if and only if $|r| __________
 • diverges if and only if $|r| __________

2c. p-series where $0 < p < \infty$. The series $\sum \frac{1}{n^p}$
 • converges if and only if $p __________
 • diverges if and only if $p __________

2d. Integral Test for a positive-termed series $\sum a_n$ where $a_n \geq 0$.
 Let $f: [1, \infty) \to \mathbb{R}$ be so that
 • $a_n = f(_______)$ for each $n \in \mathbb{N}$
 • f is a __________________ function
 • f is a __________________ function
 • f is a __________________ function
 Then $\sum a_n$ converges if and only if __________________ converges.

2e. Comparison Test for a positive-termed series $\sum a_n$ where $a_n \geq 0$.
 • If $0 \leq a_n \leq b_n$ for all $n \in \mathbb{N}$ and $\sum b_n __________$, then $\sum a_n __________$.
 • If $0 \leq b_n \leq a_n$ for all $n \in \mathbb{N}$ and $\sum b_n __________$, then $\sum a_n __________$.

2f. Limit Comparison Test for a positive-termed series $\sum a_n$ where $a_n \geq 0$.
 Let $b_n > 0$ and $\lim_{n\to\infty} \frac{a_n}{b_n} = L$.
 If _______ $< L < _______$, then $\sum a_n$ converges if and only if __________.

2g. Ratio and Root Tests for a positive-termed series $\sum a_n$ where $a_n \geq 0$.
 Let $\rho = \lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ or $\rho = \lim_{n\to\infty} (a_n)^\frac{1}{n}$.
 • If $\rho _______$, then $\sum a_n$ converges.
 • If $\rho _______$, then $\sum a_n$ diverges.
 • If $\rho _______$, then the test is inconclusive.

2h. Alternating Series Test for an alternating series $\sum (-1)^n a_n$ where $a_n > 0$ for each $n \in \mathbb{N}$.
 If
 • $a_n _______ a_{n+1}$ for each $n \in \mathbb{N}$
 • $\lim_{n\to\infty} a_n = _______$
 then $\sum (-1)^n a_n __________$
2i. By definition, for an arbitrary series \(\sum a_n \), (fill in the blanks with converges or diverges).

- \(\sum a_n \) is absolutely convergent if and only if \(\sum |a_n| \) ________
- \(\sum a_n \) is conditionally convergent if and only if \(\sum a_n \) ________ and \(\sum |a_n| \) ________
- \(\sum a_n \) is divergent if and only if \(\sum a_n \) ________

2j. If a power series in \(x - x_0 \) has radius of convergence \(R \) where \(0 < R < \infty \), then the power series is:

- absolutely convergent for __________________________
- divergent for __________________________

3. Fill-in the blanks/boxes .
- In 3a and 3e, fill in the blank with: perpendicular or parallel.
- In 3b, 3c, 3d, 3e, 3f, fill in the blank with a formula involving some of: 2, \(\pi \), radius, radius_{big}, radius_{little}, average radius, height, and/or thickness.

- Disk/Washer Method
 Let’s say you revolve some region in the \(xy \)-plane around an axis of revolution so you get a solid of revolution. Next you want to find the volume of this solid of revolution using the disk or washer method.

3a. You should partition the coordinate axis (i.e., the \(x \)-axis or the \(y \)-axis) that is __________________________ to the axis of revolution.

3b. If you use the disk method, then the volume of a typical disk is: __________________________.

3c. If you use the washer method, then the volume of a typical washer is: __________________________.

3d. If you partition the \(z \)-axis, the \(\Delta z = \) __________________________.

- Shell Method
 Let’s say you revolve some region in the \(xy \)-plane around an axis of revolution so you get a solid of revolution. Next you want to find the volume of this solid of revolution using the shell method.

3e. You should partition the coordinate axis (i.e., the \(x \)-axis or the \(y \)-axis) that is __________________________ to the axis of revolution.

3f. If you use the shell method, then the volume of a typical shell is: __________________________.

3g. If you partition the \(z \)-axis, the \(\Delta z = \) __________________________.
• **Arc Length**

3h. The arc length \(L \) of a smooth curve \(y = f(x) \) over the interval \([a, b]\) is defined by the following definite integral.

\[
L = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx.
\]

3i. The arc length \(L \) of a smooth curve \(x = g(y) \) over the interval \([c, d]\) is defined by the following definite integral.

\[
L = \int_c^d \sqrt{1 + [g'(y)]^2} \, dy.
\]

3j. The arc length \(L \) of a curve that is parametrized by

\[
x = x(t) \quad , \quad y = y(t) \quad (a \leq t \leq b)
\]

such that no segment of the curve is traced more than once as \(t \) increases from \(a \) to \(b \) and also \(\frac{dx}{dt} \) and \(\frac{dy}{dt} \) are continuous functions for \(a \leq t \leq b \), is defined by the following definite integral.

\[
L = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt.
\]

• **Average Value of a Function**

If \(y = f(x) \) is continuous on the interval \([a, b]\), the the average value \(f_{\text{ave}} \) of \(y = f(x) \) on \([a, b]\) is defined to be

\[
f_{\text{ave}} = \frac{1}{b-a} \int_a^b f(x) \, dx.
\]

• **Work**

3k. Suppose that Integration-Moose moves in the positive direction along a coordinate line over the interval \([a, b]\) while subjected to a variable force \(F(x) \) that is applied in the direction of the motion. The work \(W \) preformed by the force on Integration-Moose is defined by the following definite integral.

\[
W = \int_a^b F(x) \, dx.
\]

3l. Circle the scenario in which you perform more work:

(1) by raising a cup of coffee from a table to your mouth

(2) by holding a calculus textbook at shoulder level for 5 minutes.
\[\int x^2 e^{x^3} \, dx = + C \]
5. \[\int \frac{\tan x}{\cos^2 x} \, dx = + C \]

Hint: integration buddies.
6. \[\int x^2 e^x \, dx = \quad + C \]
7. \[\int e^{5x} \cos x \, dx = \quad + C \]

Hint: bring to the other side idea.
8. \[
\int \frac{x}{\sqrt{4x-x^2}} \, dx = + C
\]

Hint: \(4x - x^2 = 4 - (x - 2)^2\)
\[\int \frac{3x + 5}{x^3 - x^2 - x + 1} \, dx = + C \]

Hint: \(x^3 - x^2 - x + 1 = (x + 1)(x - 1)^2 \)
10. \[\int_{0}^{4} \frac{dx}{x - 2} = \]

HINT: first make a rough sketch of the function \(f(x) = \frac{1}{x-2} \) on the interval \([0, 4]\).
11. Sequences

11a. \[\frac{d}{dx} \left(\frac{x + 2}{x + 5} \right) = \]

11b. \[\lim_{n \to \infty} \left(\frac{n + 2}{n + 5} \right)^n \]
12. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.

\[\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}} \]

- [] absolutely convergent
- [] conditionally convergent
- [] divergent
13. Let

\[a_n = \frac{3^n \ n!}{(2n)!} \]

13a. Find an expression for \(\frac{a_{n+1}}{a_n} \) that does NOT have a factorial sign (that is a \(! \) sign) in it.

Hint: \((2 \ (n+1))! = (2n+2)! \)

\[\frac{a_{n+1}}{a_n} = \]

13b. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.

\[\sum_{n=1}^{\infty} (-1)^n \frac{3^n \ n!}{(2n)!} \]

- [] absolutely convergent
- [] conditionally convergent
- [] divergent
14. Consider the formal power series
\[\sum_{n=1}^{\infty} \frac{(x + 1)^n}{n} \]
The center is \(x_0 = \) \underline{[\text{expression}]} \) and the radius of convergence is \(R = \) \underline{[\text{expression}]} .
As we did in class, make a number line indicating where the power series is: absolutely convergent, conditionally convergent, and divergent. Indicate your reasoning and specifically specify what test(s) you are using. Don’t forget to check the endpoints, if there are any.
15. Using the fact that
\[
\frac{1}{1 - r} = \sum_{n=0}^{\infty} r^n \quad \text{when} \quad |r| < 1 ,
\]

find a power series expansion of
\[
\frac{x}{4 + 100x^2}
\]
and state when it is valid. Simplify your answer so that your power series has the form
\[
\sum_{n=0}^{\infty} c_n x^{\text{some power}}
\]
for some constants \(c_n \).

\[
\frac{x}{4 + 100x^2} = \sum_{n=0}^{\infty} c_n x^{\text{some power}} \quad \text{valid when} \quad |x| <
\]
Let R be the region in the first quadrant enclosed by $y = 2x$ and $y = x^2$.

16. Express the area of R as integral(s) with respect to x.

$$\text{Area} =$$

17. Using the shell method, express as integral(s) the volume of the solid generated by revolving R about the line $x = 3$.

$$\text{Volume} =$$