MARK BOX

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POINTS</th>
<th>in class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 a – y</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2 a – o</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4 – 16 (10 pts each)</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>17 a–f</td>
<td>10</td>
<td>take home</td>
</tr>
<tr>
<td>18 take home</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

NAME: ____________________________

please check the box of your section

Section 005 (WF 8:00 am)

or

Section 006 (WF 9:05 am)

The (whole) final exam covers (from Calculus by Anton, Bivens, Davis 8th ed.):
Sections: 7.1 - 7.4, 7.6, 7.7, 8.1 - 8.5, 8.8, 10.1 - 10.10.
The above MARK BOX and below Problem Inspiration gives you an idea of the break down.

Problem Inspiration:

IN CLASS: 1.–16.

1.–3. Fill in the blanks and True/False (omitting sections 10.7, 10.9, 10.10)
4.&5. Chapter 7
6.–11. Chapter 8
12.–16 Sections 10.1 – 10.6 and 10.8

TAKE HOME 17.–18.

17.&18 Sections 10.7, 10.9, 10.10

INSTRUCTIONS for TAKE HOME PART, which is due at 2pm on December 15, 2006:

(1) Turn in all 5 pages of this exam.
(2) To receive credit you must:
 (a) work in a logical fashion, show all your work, indicate your reasoning;
 no credit will be given for an answer that just appears;
 such explanations help with partial credit
 (b) if a line/box is provided, then:
 — show you work BELOW the line/box
 — put your answer on/in the line/box
 (c) if no such line/box is provided, then box your answer
(3) You can use books and notes.
(4) You can not use a calculator. You can not use a computer. Thus you do not need
to do lots of multiplication and may leave you answers as you would on previous exams
(e.g. \(\frac{7(17)}{3} \) is acceptable).
(5) You can not receive help from other people.

SIGNATURE REQUIRED:

I hereby verify that I did NOT receive help from other people on this final exam take-home part.

Signature: ____________________________
Let \(y = f(x) \) be a function with derivatives of all orders in an interval \(I \) containing \(x_0 \).
Let \(y = P_N(x) \) be the \(N \)th-order Taylor polynomial of \(y = f(x) \) about \(x_0 \).
Let \(y = R_N(x) \) be the \(N \)th-order Taylor remainder of \(y = f(x) \) about \(x_0 \).
Let \(y = P_\infty(x) \) be the Taylor series of \(y = f(x) \) about \(x_0 \).
Let \(c_n \) be the \(n \)th Taylor coefficient of \(y = f(x) \) about \(x_0 \).

A. In open form (i.e., with \ldots and without a \(\sum \)-sign)

\[
P_N(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f^{(2)}(x_0)}{2!}(x-x_0)^2 + \frac{f^{(3)}(x_0)}{3!}(x-x_0)^3 + \cdots + \frac{f^{(N)}(x_0)}{N!}(x-x_0)^N
\]

B. In closed form (i.e., with a \(\sum \)-sign and without \ldots)

\[
P_N(x) = \sum_{n=0}^{N} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n
\]

C. In open form (i.e., with \ldots and without a \(\sum \)-sign)

\[
P_\infty(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f^{(2)}(x_0)}{2!}(x-x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + \ldots
\]

D. In closed form (i.e., with a \(\sum \)-sign and without \ldots)

\[
P_\infty(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n
\]

E. We know that \(f(x) = P_N(x) + R_N(x) \). Taylor’s BIG Theorem tells us that, for each \(x \in I \),

\[
R_N(x) = \frac{f^{(N+1)}(c)}{(N+1)!} (x-x_0)^{N+1}
\]

for some \(c \) between \(x \) and \(x_0 \).

F. The formula for \(c_n \) is

\[
c_n = \frac{f^{(n)}(x_0)}{n!}
\]
17. Do parts (a) - (f) for the following:

\[f(x) = xe^x \quad x_0 = 0 \quad J = (-17, 2) \]

You might find it easier to do problems (a) - (f) in a different order. Just do what you find easiest.

Use only:
- the definition of Taylor polynomial
- the definition of Taylor series
- the theorem/error-estimate on the \(N^{th} \)-Remainder term for Taylor polynomials.

Do NOT use a known Taylor Series (i.e., do not use methods from section 10.10).

17a Find the following. Note the 1st column are functions of \(x \) and the 2nd and 3rd columns are numbers (do not get out a calculator and start pushing keys for the numbers).

\[
\begin{array}{cccc}
\hline
f^{(0)}(x) = & f^{(0)}(x_0) = & c_0 = \\
\hline
f^{(1)}(x) = & f^{(1)}(x_0) = & c_1 = \\
\hline
f^{(2)}(x) = & f^{(2)}(x_0) = & c_2 = \\
\hline
f^{(3)}(x) = & f^{(3)}(x_0) = & c_3 = \\
\hline
f^{(4)}(x) = & f^{(4)}(x_0) = & c_4 = \\
\hline
f^{(5)}(x) = & \text{nothing for here} & \text{nothing for here} \\
\hline
\end{array}
\]

17b Find the \(N^{th} \)-order Taylor polynomial of \(y = f(x) \) about \(x_0 \) in OPEN form for \(N = 0, 1, 2, 3, 4 \).

\[
\begin{array}{llll}
\hline
P_0(x) = & \\
\hline
P_1(x) = & \\
\hline
P_2(x) = & \\
\hline
P_3(x) = & \\
\hline
P_4(x) = & \\
\hline
\end{array}
\]
17c. Find the Taylor series of \(y = f(x) \) about \(x_0 \) in OPEN form.

\[
P_\infty(x) =
\]

17d. Find the Taylor series of \(y = f(x) \) about \(x_0 \) in CLOSED form.

\[
P_\infty(x) =
\]

17e. Consider the given interval \(J \). Find an upper bound for the maximum of \(|f^{(5)}(x)| \) on the interval \(J \).

You answer should be a number (leave it as a fraction - do not get out a calculator and start pushing keys). You answer cannot have an: \(N, x, x_0, c \).

\[
\max_{c \in J} |f^{(5)}(c)| \leq
\]

17f. Consider the given interval \(J \). Using Taylor’s Remainder Theorem (i.e., Taylor’s Big Theorem), find an upper bound for the maximum of \(|R_4(x)| \) on the interval \(J \). You answer should be a number (leave it as a fraction - do not get out a calculator and start pushing keys). You answer cannot have an: \(N, x, x_0, c \).

\[
\max_{x \in J} |R_4(x)| \leq
\]
Using the fact that
\[
\frac{1}{1 - r} = \sum_{n=0}^{\infty} r^n \quad \text{when} \quad |r| < 1, \quad (\ast)
\]
find a power series expansion of
\[
\frac{x}{4 + 100x^2}
\]
and state when it is valid. Simplify your answer so that your power series has the form
\[
\sum_{n=0}^{\infty} c_n x^\text{some power}
\]
for some constants \(c_n\).

\[
\frac{x}{4 + 100x^2} = \sum_{n=0}^{\infty} \quad \text{valid when} \quad |x| < \]