INSTRUCTIONS:

(1) To receive credit you must:
 (a) **work in a logical fashion, show all your work, indicate your reasoning:**
 no credit will be given for an answer that *just appears*;
 such explanations help with partial credit
 (b) when applicable put your answer on/in the line/box provided
 (c) if no such line/box is provided, then box your answer

(2) The **MARK BOX** indicates the problems along with their points.
 Check that your copy of the exam has all of the problems.

(3) You may **not** use a calculator, books, personal notes.

(4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish:
 turn your exam over, put your pencil down, and raise your hand.

(5) This exam covers (from *Calculus* by Anton, Bivens, Davis 8th ed.):
 Sections 6.6, 6.8, 6.9, 7.1–7.4, 7.6, 7.7, 8.1–8.8, 10.1–10.10.

Problem Inspiration: homework and old exams.

Solutions will be available on the course homepage later this afternoon.
1. Fill in the blanks (each worth 1 point) and boxes (each worth 2 points).

1a. \(\int \frac{dx}{x} = \boxed{} \quad |x| + C \)

1b. \(D_x e^x = \boxed{} \)

1c. If \(a > 0 \) but \(a \neq 1 \), then \(D_x a^x = \boxed{} \)

Hint: \(a^x = e^{\ln(a^x)} = e^{x \ln(a)} \). Your answer should **not** have an “\(e \)” in it.

1d. \(D_x \tan x = \boxed{} \)

1e. \(\int \sec x \tan x = \boxed{} + C \)

1f. Integration by parts formula:
 \(\int u \, dv = \boxed{} \)

1g. Trig substitution: (recall that the *integrand* is the function you are integrating)
 if the integrand involves \(a^2 - u^2 \), then one makes the substitution \(u = \boxed{} \)

1h. Trig substitution:
 if the integrand involves \(a^2 + u^2 \), then one makes the substitution \(u = \boxed{} \)

1i. Partial Fraction Decomposition. If one wants to integrate \(\frac{f(x)}{g(x)} \) where \(f \) and \(g \) are polynomials
 and \(\deg(f) \geq \deg(g) \), then one must first do \(\boxed{} \)

1j. **Integral Test:** \(a_n > 0 \)

Let \(f: [1, \infty) \to \mathbb{R} \) be so that

- \(a_n = f(\boxed{}) \) for each \(n \in \mathbb{N} \)
- \(f \) is a \(\boxed{} \) function
- \(f \) is a \(\boxed{} \) function
- \(f \) is a \(\boxed{} \) function

Then \(\sum a_n \) converges if and only if \(\boxed{} \) converges.

1k. **Comparison Test:** \(a_n > 0 \)

- If \(0 \leq a_n \leq b_n \) for all \(n \in \mathbb{N} \) and \(\sum b_n \boxed{} \), then \(\sum a_n \boxed{} \).
- If \(0 \leq b_n \leq a_n \) for all \(n \in \mathbb{N} \) and \(\sum b_n \boxed{} \), then \(\sum a_n \boxed{} \).

1l. **Limit Comparison Test:** \(a_n > 0 \)

Let \(b_n > 0 \) and \(\lim_{n \to \infty} \frac{a_n}{b_n} = L \).

If \(\boxed{} < L < \boxed{} \), then \(\sum a_n \) converges if and only if \(\sum b_n \boxed{} \)
1m. Ratio Test: \(a_n > 0 \)

Let \(\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} \).

- If \(\rho < \underline{\text{________}} \) then \(\sum a_n \) converges.
- If \(\rho > \underline{\text{________}} \) then \(\sum a_n \) diverges.
- If \(\rho = \underline{\text{________}} \) then the test is inconclusive.

1n. Root Test: \(a_n > 0 \)

Let \(\rho = \lim_{n \to \infty} \left(a_n \right)^{\frac{1}{n}} \).

- If \(\rho < \underline{\text{________}} \) then \(\sum a_n \) converges.
- If \(\rho > \underline{\text{________}} \) then \(\sum a_n \) diverges.
- If \(\rho = \underline{\text{________}} \) then the test is inconclusive.

1o. Alternating Series Test: \(a_n > 0 \)

If

- \(a_n \underline{\text{________}} a_{n+1} \) for each \(n \in \mathbb{N} \)
- \(\lim_{n \to \infty} a_n = \underline{\text{________}} \)

then \(\sum (-1)^n a_n \underline{\text{________________________}} \).

1p. \(n^{\text{th}}\)-term test: \(a_n \)'s are arbitrary

If \(\lim_{n \to \infty} a_n \neq 0 \) or \(\lim_{n \to \infty} a_n \) does not exist, then \(\sum a_n \underline{\text{________________________}} \).

1q. Consider the interval \(I = (a - R, a + R) \) center about \(x = a \) and of radius \(R \).

Let \(y = f(x) \) be a function that can be differentiated \(N \) times \(x = a \). Then the \(N^{\text{th}}\)-order Taylor polynomial \(y = P_N(x) \) of \(f \) about \(a \) is (your answer should have a summation sign \(\sum \) in it)

\[
P_N(x) =
\]

1r. Consider the interval \(I = (a - R, a + R) \) center about \(x = a \) and of radius \(R \).

Let \(y = f(x) \) be a function that can be differentieated \(N + 1 \) times for each \(x \in I \).

Consider the the \(N^{\text{th}}\)-order Taylor Reminder term \(R_N(x) \), where \(f(x) = P_N(x) + R_N(x) \).

Then an upper bound for \(|R_N(x)| \) for an \(x \in I \) is:

\[
|R_N(x)| \leq
\]
2. \[D_x \cos(\ln x) = \]

3. \[D_x 7^{(x^2)} = \]
4. \[
\int (\tan x) (\sec^7 x) \, dx =
\]

Remark: box your substitution box for more partial credit.
5.

\[
\int x^2 \arctan x \, dx =
\]

Remark: box your substitution box for more partial credit.
6. \[\int \frac{x^2}{\sqrt{4-x^2}} \, dx = \]

Remark: box your substitution box for more partial credit.
7. Let R be the region enclosed by

$$y = x^2 \quad \text{and} \quad x = 2 \quad \text{and} \quad y = 0.$$

Let V be the volume of the solid obtained by revolving the region R about the line $x = 3$.

7a. Make a rough sketch below of the region R, labeling the important points.

7b. Using the disk/washer method, express the volume V as an integral (or maybe 2 integrals). You do NOT have to evaluate the integral(s).

\[
V = \]

8. \[
\lim_{n \to \infty} \frac{3n^{5/2} + 7n^2 + 9}{-17n^{5/2} + 3n^2 - 9n - 18} =
\]

9. \[
\lim_{n \to \infty} \frac{8n^{15} - 7n^{10} + 19}{-5n^{13} + 6n^8 - 6n^5 + 9} =
\]
On problems 10 and 11b, check the correct box and then indicate your reasoning below. A correctly checked box without appropriate explanation will receive no points.

10. \[
\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}
\]

- [] absolutely convergent
- [] conditionally convergent
- [] divergent
11a. Let \(a_n = \frac{n^3(n!)}{(2n)!} \). Find \(\frac{a_{n+1}}{a_n} \). Simplify your answer so that no factorial sign (i.e., \(!\)) appears.

answer: \(\frac{a_{n+1}}{a_n} = \)

11b. \(\sum_{n=17}^{\infty} (-1)^n \frac{n^3(n!)}{(2n)!} \)

- [] absolutely convergent
- [] conditionally convergent
- [] divergent
12. Consider the formal power series
\[\sum_{n=1}^{\infty} \frac{(2x + 8)^n}{n} . \]
As we did in class, in the box below draw a diagram indicating for which \(x \)'s this series is: absolutely convergent, conditionally convergent, and divergent. Of course, indicate your reasoning.
13. Let

\[f(x) = (1 + x)^{3/2} \]

and \(a = 0 \).

Find the 3\(^{rd}\)-order Taylor polynomial of \(y = f(x) \) about (or at) \(a = 0 \).

\[P_3(x) = \]
14. As in problem 13, let

\[f(x) = (1 + x)^{3/2} \]

and \(a = 0 \).

Let \(f(x) = P_3(x) + R_3(x) \), where \(y = P_3(x) \) is the 3rd-order Taylor polynomial of \(y = f(x) \) about \(a = 0 \) and \(y = R_3(x) \) is the corresponding remainder (i.e., error) term.

Consider the interval \(I = (-0.5, 0.5) \) center about \(a = 0 \). Fix an \(x \in I \). Find a good upper bound for \(|R_3(x)|\).

\[|R_3(x)| \leq \]

Remark: you only have to carry out the algebra as far as I indicated in class.