INSTRUCTIONS:

(1) To receive credit you must:
 (a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that just appears; such explanations help with partial credit
 (b) when applicable put your answer on/in the line/box provided
 (c) if no such line/box is provided, then box your answer
(2) The MARK BOX indicates the problems along with their points.
 Check that your copy of the exam has all of the problems.
(3) You may not use a calculator, books, personal notes.
(4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
(5) This exam covers (from Calculus by Anton, Bivens, Davis 8th ed.):
 Sections 10.1 – 10.6.

Problem Inspiration:

1-3. a course handout - you were warned
4-6. homework from § 10.1
7. homework from § 10.3
8-10. homework from § 10.6

Solutions will be available on the course homepage later this afternoon.
For problems 1, 2, and 3, fill in the blanks.

Hint: I do NOT want to see the words absolute nor conditional on this page!

1. For problem 1, let $\sum a_n$ be a **positive-termed** series (i.e. $a_n \geq 0$ for each $n \in \mathbb{N}$).

 1a. Integral Test
 Let $f : [1, \infty) \rightarrow \mathbb{R}$ be so that

 - $a_n = f(\text{_______})$ for each $n \in \mathbb{N}$
 - f is a ______________ function
 - f is a ______________ function
 - f is a ______________ function.

 Then $\sum a_n$ converges if and only if $\text{________________________}$ converges.

 1b. Comparison Test

 - If $0 \leq a_n \leq b_n$ for all $n \in \mathbb{N}$ and $\sum b_n$ ____________, then $\sum a_n$ ____________.
 - If $0 \leq b_n \leq a_n$ for all $n \in \mathbb{N}$ and $\sum b_n$ ____________, then $\sum a_n$ ____________.

 1c. Limit Comparison Test
 Let $b_n > 0$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$. If __________ $< L <$ __________, then $\sum a_n$ converges if and only if $\text{________________________}$.

 1d. Ratio Test
 Let $\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.

 - If $\rho <$ __________ then $\sum a_n$ converges.
 - If $\rho >$ __________ then $\sum a_n$ diverges.
 - If $\rho =$ __________ then the test is inconclusive.

 1e. Root Test
 Let $\rho = \lim_{n \to \infty} (a_n)^{\frac{1}{n}}$.

 - If $\rho <$ __________ then $\sum a_n$ converges.
 - If $\rho >$ __________ then $\sum a_n$ diverges.
 - If $\rho =$ __________ then the test is inconclusive.

2. For problem 2, we now have an **alternating series**, i.e., $\sum (-1)^n a_n$ where $a_n > 0$ for each $n \in \mathbb{N}$.

 Alternating Series Test: If

 - a_n __________ a_{n+1} for each $n \in \mathbb{N}$
 - $\lim_{n \to \infty} a_n =$ __________

 then $\sum (-1)^n a_n$ ____________

3. For problem 3, we now have an arbitrary series $\sum a_n$ (some terms might be positive, some might be negative, all might be positive, etc ...).

 nth-term test If $\lim_{n \to \infty} a_n \neq 0$ or $\lim_{n \to \infty} a_n$ does not exist, then $\sum a_n$ ____________.
4. \[
\lim_{n \to \infty} \frac{4n^3 + 6n^2 - 17n + 9}{-5n^3 + 7n^2 - 9n - 18} =
\]

5. \[
\lim_{n \to \infty} \frac{7n^2 + 9}{-5n + 2} =
\]
Hint: watch your plus and minus.

6. \[
\lim_{n \to \infty} \frac{\ln(n)}{n} =
\]
Hint: L'Hôpital
7. Geometric Series

7a. If $|r| < 1$, then

$$\sum_{n=0}^{\infty} r^n =$$

Notice (a polite hint for problem 7b), if $|r| < 1$, then

$$\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + r^3 + r^4 + \ldots$$

7b. Find the sum of the below series. (Note that the sum begins at $n = 10$ instead of $n = 0$.)

$$\sum_{n=10}^{\infty} \left(\frac{1}{3}\right)^{n-2} =$$

You only have to carry the algebra out as far as I indicated in class.
On problems 8 - 10, check the correct box and then indicate your reasoning below. A correctly checked box without appropriate explanation will receive no points.

8. \[\sum_{n=1}^{\infty} (-1)^n \left(\frac{\pi}{e} \right)^n \]

- [] absolutely convergent
- [] conditionally convergent
- [] divergent

Hint: \(\frac{\pi}{e} \approx \frac{3.14}{2.7} \approx 1.16 \).
9. \[\sum_{n=17}^{\infty} (-1)^n \frac{1}{n!} \]

- Absolutely convergent
- Conditionally convergent
- Divergent
10. \[\sum_{n=2}^{\infty} (-1)^n \frac{n^2}{n^3 + 8} \]

- Absolutely convergent
- Conditionally convergent
- Divergent
More space for problem 10