Exam 3 will be based on:

- Sections 8.1 - 8.4;
 At minimum, you need to understand how to do the homework problems.

Topic List (not necessarily comprehensive):

You will need to know: theorems, results, and definitions from class.

§8.1: Green’s Theorem.

Theorem. Let $D \subseteq \mathbb{R}^2$ be a region enclosed by a simple closed curve C. Suppose that P, $Q : D \to \mathbb{R}$ are C^1. Then we have

$$
\int_C P \, dx + Q \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy.
$$

Notes:

- **Application: Area.** Let $D \subseteq \mathbb{R}^2$ be enclosed by a simple closed curve C. Then we have
 $$
 \text{Area}(D) = \frac{1}{2} \int_C x \, dy - y \, dx.
 $$
- **Alternative formulations.**
 - Let $\vec{F} = P\vec{i} + Q\vec{j}$. Then we have
 $$
 \int_{\partial D} \vec{F} \cdot d\vec{s} = \iint_D (\nabla \times \vec{F}) \cdot \vec{k} \, dA.
 $$
 This form looks like Stokes’ Theorem.
 - We have
 $$
 \int_{\partial D} \vec{F} \cdot \vec{n} \, ds = \iint_D \nabla \cdot \vec{F} \, dA.
 $$
 This is the “Divergence Theorem in the plane”.
§8.2: Stokes’ Theorem.

Theorem. Suppose that S is an oriented surface, suppose that $D \subseteq \mathbb{R}^2$ is a region to which Green’s Theorem applies, and suppose that $\Phi : D \rightarrow S$ is a $1-1$ parametrization of S. Let $\vec{F} : S \rightarrow \mathbb{R}^3$ be C^1. Then we have

\[\iint_S (\nabla \times \vec{F}) \cdot d\vec{S} = \int_{\partial S} \vec{F} \cdot d\vec{s}. \]

Notes:
- The curve ∂S has orientation induced by S: one traverses the curve ∂S in the positive direction when the positive side of S is on the left.
- On specializing $D = S$ and $\vec{F} = P\hat{i} + Q\hat{j}$, one obtains Green’s Theorem.

Definition. Let C be a simple, oriented, closed curve, and let $\vec{F} : \mathbb{R}^3 \rightarrow \mathbb{R}^3$. Then the **circulation** of \vec{F} around C is $\int_C \vec{F} \cdot d\vec{s}$.

Theorem. Let $S \subseteq \mathbb{R}^3$ be a surface, let $P \in S$, and suppose that S has orientation determined by a unit normal \vec{n} to S. Then we have

\[\lim_{A(S) \rightarrow 0} \frac{1}{A(S)} \int_{\partial S} \vec{F} \cdot d\vec{s} = \left[(\nabla \times \vec{F}) \cdot \vec{n} \right] |_P = \text{curl } \vec{F} \cdot \vec{n} |_P, \]

where $A(S) = \text{Area}(S) \rightarrow 0$ means that S shrinks smoothly and continuously to the point P.

Notes:
- The right side of the theorem gives the component of curl \vec{F} normal to the surface S at the point $P \in S$. The right side is maximized when \vec{n} points in the same direction as $\nabla \times \vec{F}$ at P. I.e., curl \vec{F} points in the direction of the axis about which \vec{F} “rotates the most”.
- The left side of the theorem gives the circulation of \vec{F} around the boundary of S per unit area.

§8.3: Conservative vector fields.

Definitions. Let $\vec{F} : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be a C^1 vector field.

- The field \vec{F} is **conservative** or a gradient field if and only if there exists $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ with $\nabla f = \vec{F}$. The function f is a scalar potential for \vec{F}.
- The field \vec{F} is **irrotational** if and only if $\nabla \times \vec{F} = \vec{0}$.
- The field \vec{F} is incompressible or solenoidal if and only if $\nabla \cdot \vec{F} = 0$.
- Suppose that $\vec{F} = \nabla \times \vec{G}$. Then \vec{G} is a vector potential for \vec{F}.

2
Theorem. Suppose that \(\vec{F} : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) is \(C^1 \) except at finitely many points. Then the following are equivalent.

1. The circulation of \(\vec{F} \) around the boundary of every simply closed curve \(C \) is zero:
 \[
 \int_C \vec{F} \cdot d\vec{s} = 0.
 \]
2. Line integrals along oriented simple curves are independent of path: for all oriented simple curves \(C_1, C_2 \) connecting points \(P \) and \(Q \), we have
 \[
 \int_{C_1} \vec{F} \cdot d\vec{s} = \int_{C_2} \vec{F} \cdot d\vec{s}.
 \]
3. The vector field \(\vec{F} \) is conservative.
4. The vector field \(\vec{F} \) is irrotational.

Notes:

- The theorem continues to hold for 2-dimensional fields \(\vec{F} : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \). However, \(\vec{F} \) must be \(C^1 \) everywhere.
- To verify whether or not a vector field \(\vec{F} \) is conservative, one typically checks whether or not \(\nabla \times \vec{F} = \vec{0} \). (This is \((3) \iff (4) \)).
- If \(\vec{F} \) is conservative, then one finds a potential function \(f \) via one of the following methods.
 1. We compute
 \[
 f = \int \frac{\partial f}{\partial x} \, dx + g_1(y, z), \quad f = \int \frac{\partial f}{\partial y} \, dy + g_2(x, z), \quad f = \int \frac{\partial f}{\partial z} \, dz + g_3(x, y).
 \]
 Since \(\vec{F} \) is conservative, one can find \(g_1, g_2, \) and \(g_3 \) for which the three expressions for \(f \) agree.
 2. We compute
 \[
 f(x, y, z) = \int_0^x F_1(t, 0, 0) \, dt + \int_0^y F_2(x, t, 0) \, dt + \int_0^z F_3(x, y, t) \, dt.
 \]
- The scalar potential \(f \) is unique up to addition by a constant \(C \).
Theorem. Let $\vec{F} : \mathbb{R}^3 \to \mathbb{R}^3$. Then \vec{F} is incompressible (i.e., $\nabla \cdot \vec{F} = 0$) if and only if there exists $\vec{G} : \mathbb{R}^3 \to \mathbb{R}^3$ with $\vec{F} = \nabla \times \vec{G}$ (\vec{G} is a vector potential for \vec{F}).

Notes:

- If \vec{F} is incompressible, one finds a vector potential \vec{G} as follows. Compute

 $$G_1 = \int_0^z F_2(x, y, t) \, dt - \int_0^y F_3(x, t, 0) \, dt, \quad G_2 = -\int_0^z F_1(x, y, t) \, dt, \quad G_3 = 0.$$

 Then $\nabla \times \vec{G} = \vec{F}$.
- A vector potential \vec{G} is unique up to addition by a gradient field.

§8.4: The divergence theorem.

A surface S is closed if and only if $\partial S = \emptyset$.

Theorem. Suppose that

- W is an elementary symmetric region in \mathbb{R}^3.
- ∂W is a closed, oriented surface bounding W.
- $\vec{F} : W \to \mathbb{R}^3$ is a C^1 vector field.

Then we have

$$\iiint_W \nabla \cdot \vec{F} \, dV = \iint_{\partial W} \vec{F} \cdot d\vec{S}.$$

Note: The Divergence Theorem applies to regions which arise as finite unions of elementary symmetric regions.

Definition. Let $S \subseteq \mathbb{R}^3$ be a closed surface with outward unit normal \vec{n}, and let $\vec{F} : S \to \mathbb{R}^3$ be a C^1 vector field. Then the flux of \vec{F} through S is the mass of particles forced through S by \vec{F} per unit time. The rate of net outward flux of \vec{F} through S is $\iint_S \vec{F} \cdot \vec{n} \, dS$.

Fact. Let $W \subseteq \mathbb{R}^3$ be an elementary region, and let $P \in W$. Then we have

$$\lim_{V(W) \to 0} \frac{1}{V(W)} \iint_{\partial W} \vec{F} \cdot d\vec{S} = \left(\nabla \cdot \vec{F} \right)|_P = \text{div} \vec{F}|_P,$$

where $V(W) = \text{vol}(W) \to 0$ means that W shrinks smoothly and continuously to P.

Note: The fact says that the divergence of \vec{F} at a point $P \in W$ is the rate of net outflux of \vec{F} per unit volume.