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Abstract We develop a numerical approximation for a hydrodynamic phase field model of
three immiscible, incompressible viscous fluid phases. The model is derived from a general-
ized Onsager principle following an energetic variational formulation and is consisted of the
momentum transport equation and coupled phase transport equations. It conserves the volume
of each phase and warrants the total energy dissipation in time. Its numerical approximation
is given by a set of easy-to-implement, semi-discrete, linear, decoupled elliptic equations at
each time step, which can be solved efficiently using fast solvers. We prove that the scheme
is energy stable. Mesh refinement tests and three numerical examples of three-phase viscous
fluid flows in 3D are presented to benchmark the effectiveness of the model as well as the
efficiency of the numerical scheme.
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1 Introduction

In recent years, the diffuse-interface or phase-field model has been used successfully in many
fields of science and engineering to describe multiphasic materials and emerged as one of
the effective modeling and computational tools to study interfacial phenomena (cf. [1,8,14–
16,19,21,23,37–39], and the references therein). The essential idea in the phase field model,
which can be traced back to the pioneering work of [27,32], is to use continuous phase field
variables to describe multiple phases in multiphasic material systems, where the interfaces
are represented by thin, smooth transition layers. When the phase field model is derived
from an energetic variational formalism coupled with the Onsager principle, the governing
system of equations is normally well-posed and satisfies an energy dissipation law. As the
result, one can carry out mathematical analyses to show solution existence and uniqueness
in appropriate function spaces and then develop efficient numerical schemes to approximate
the equations in the model that possess an analogous energy dissipation property discretely.

To model a two-phase system using the phase field approach, one phase variable is needed
to label the two distinctive components at two distinct values. Such a phase variable is a
smooth function with a steep change at the interface, controlled by an interfacial thickness
parameter. The free energy for the binarymaterial system usually consists of (i) a double-well
bulk part which promotes either of the two phases in the bulk, yielding a hydrophobic contri-
bution to the free energy; (ii) a conformational entropic term that promotes hydrophilicity in
the multiphasic material system. The competition between the hydrophilic and hydrophobic
part in the free energy forms the mechanism for the coexistence of two distinctive phases
in the binary system. Based on the generalized Onsager principle [25,26,35,36], dynamics
of the interfaces can be governed either by the Allen–Cahn equation or the Cahn–Hilliard
equation. The Cahn–Hilliard equation is a fourth-order equation which conserves the inte-
gral of the phase variable, normally linked to the volume of the material in one phase. It is
relatively harder to solve numerically however. The Allen–Cahn equation on the other hand
is a second-order equation, which is easier to solve numerically but does not conserve the
volume of the material in any phase. However, it can be modified by adding a Lagrangian
multiplier [31,33] or a penalty term to the free energy [11] to force the model to conserve
the volume approximately. Such a phase-field model has been well studied for instance in
[1,14,15,21]).

For three-phase (ternary) systems, two models are proposed in [3,18] using three phase
variables governed by Cahn–Hilliard equations. In [18], the free energy of the system is
simply a summation of the original biphasic energy for each phase variable in binary models.
To conserve the volume by applying the Lagrangian multiplier, one phase variable and its
transport equation is actually redundant and is therefore neglected. However, such a system is
notwell posed for the total spreading case and somenonphysical instabilities at interfacesmay
occur, that is shown in [3]. Therefore, a sixth order polynomial potential is added to the free
energy that can make the system well-posed. But such term makes the three phase variables
nonlinearly coupled together. The authors in [3] also developed several energy stable schemes
for the model. We note that the schemes are all nonlinear and quite complicated, which
requires some efficient iterative methods in their implementations. In fact, all difficulties
about how to develop easy-to-implement (linear) numerical schemes while maintaining the
energy-stability for the ternary model in [3], lie in the sixth order polynomial potential term,
and it remains an open problem.

Many phase field models available so far satisfy total energy dissipation, especially, the
ones derived using the generalized Onsager principle. While developing numerical schemes
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to solve the phase fieldmodels, it is especially desirable to preserve such an energy dissipation
law at the discrete level. On the one hand, the preservation of the energy law is critical for
the numerical schemes to capture the correct long time dynamics of the system. On the other
hand, the energy-law preserving schemes provides flexibility for dealing with the stiffness
issue in phase-filed models. In particular, the dynamics of the coarse-graining (macroscopic)
process may undergo rapid changes near the interface, so the non-compliance of energy
dissipation laws may lead to spurious numerical solutions if the grid and time step sizes are
not carefully chosen.

In this paper, we consider a new ternary phase field model proposed in [5], which is not
originated from the addition of biphasic free energies derived in [3,18]. In the traditional
approach [3,18], the authors introduce three phase variables which add up to be 1. Although
one can always eliminate one phase variable during numerical simulations. However, we note
that, after elimination, the transport equations may be quite complicated. For the model in
[5], only two phase variables are introduced to describe the three fluid components, where the
two phase variables are coupled nonlinearly in the free energy functional and the free energy
functional as well as the resulting transport equations for the phase variables are simpler.
This allows us to develop elegant numerical schemes to solve the equations in this paper.
It is remarkable that analogous approaches have been used to study the multiphasic fluid
mixture of liquid crystals and viscous fluids [31,34,37,40], where the liquid crystal phase
is introduced in the similar way through a nonlinear coupling with the phase variable. In
addition, to conserve the volume of each phase, we modify the free energy functional in the
model derived in [5] by adding two penalty terms (cf. [11]).

Themodel in [5] is proposed for three phase fluid systems in which two pairs of the surface
tension coefficients between adjacent fluid phases are identical. The phase variables in this
model should be called label functions more appropriately. When the transport equation is
formulated using the Allen–Cahn equation, the total volume of the fluid mixture is naturally
conserved. In contrast, one has to imposed a penalty functional to enforce the constrain
using the traditional three phase model when formulating using the Allen–Cahn equation.
In addition, the transport equation in this model is simpler compared to the equations of the
traditional three-phase model after one phase variable is eliminated in [3,18]. Aside from
the triple point where all three phases meet, the model and the traditional three phase model
all give a reasonably good approximation to the surface energy in the mixture system. This
prompted us to develop an efficient numerical approximation to the new model and use it to
study interfacial dynamics of three-phase fluid mixtures.

One of the objectives of this paper is to construct efficient numerical schemes to solve
the coupled three-phase hydrodynamic model that (i) is stable, (ii) satisfies a discrete energy
dissipation law, and (iii) leads to linear and decoupled elliptic equations to solve at each time
step. This is by no means an easy task due to the nonlinear couplings among the velocity, the
pressure and themultiple phase variables. The second objective is to implement the scheme to
simulate three multiphasic phenomena involving multiphasic fluids of three distinct viscous
fluid components. First, we simulate how a pair of encapsulated binary fluid drops merge
into a single one. Second, we simulate a liquid lens situated at the interface between two
distinct viscous fluids. Third, we simulate a rising fluid bubble through a stratified viscous
fluid layer. The simulations reveal many details during the complex interfacial dynamical
processes, which has not been exposed before via numerical simulations.

The rest of the paper is organized as follows. In the next section, we describe the three-
phase field model and derive the associated energy dissipation law. In Sect. 3, we construct
the decoupled, linear, energy stable numerical scheme to solve the coupled nonlinear partial
differential equation system and prove its energy stability. In Sect. 4, we benchmark the
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convergence rate of the model and perform numerical simulations on three applications
to illustrate the efficiency of the proposed scheme and to reveal details of the three non-
equilibrium interfacial dynamical processes. In Sect. 5, we give the concluding remark.

2 Phase-Field Model for Three-Phase Viscous Fluid Mixtures

In the traditional framework of the phase-field method for two-phase fluid flows, one needs
a labeling function or phase variable φ(x, t) to identify the two distinct fluid phases, namely{

φ = 1, for fluid I,

φ = −1, for fluid II.
(2.1)

where a thin smooth transitional layer of finite thickness connects the two fluids so that the
interface of the two phase fluid is described by the zero level set �t = {x : φ(x, t) = 0}.
Thereafter, the motion of the free moving interface is automatically tracked by dynamics of
the diffusive interface model. Hence, the mixing energy functional is defined as follows:

Ebi
mix =

∫
�

λ
( ε

2
|∇φ|2 + F(φ)

)
dx, (2.2)

where� ∈ R
3 is a smooth domain, F(φ) = 1

4ε (φ2−1)2 is theGinzburg–Landau double-well
potential, λ is the surface tension parameter and ε is a parameter describing the interfa-
cial thickness. The two parts of the energy functional represents the “hydrophilic” and the
“hydrophobic” tendency of the two fluids, respectively.

Extending the approach for modeling the two phase case, a model for three-phase fluids
is developed by introducing an additional labeling variable ψ(x, t) in [5]. Specifically, a
single phase is characterized by {ψ = 1}where φ is not defined. In the region represented by
{ψ = −1}, there are two phases distinguished by different values of {φ = 1} and {φ = −1},
namely ⎧⎪⎨

⎪⎩
ψ = 1, for fluid I,

ψ = −1, φ = 1, for fluid II ,

ψ = −1, φ = −1, for fluid III .

(2.3)

Then, the mixing free energy is defined as follows:

Etri
mix =

∫
�

W (φ, ψ,∇φ,∇ψ)dx

=
∫

�

(
λ1(φ)

(
1

2
|∇ψ |2 + F1(ψ)

)
+ λ23

(
ψ − 1

2

)2 (
1

2
|∇φ|2 + F2(φ)

))
dx,

(2.4)

where F1(ψ) = 1
4ε(φ)2

(ψ2 − 1)2 and F2(φ) = 1
4ε223

(φ2 − 1)2. ε(φ) and ε23 are model

parameters describing interfacial thickness along different phases, λ1(φ) and λ23 measure
surface tensions at the interfaces, where ε(φ) = ε12 if φ = 1, ε(φ) = ε13 if φ = −1;
λ1(φ) = λ12 if φ = 1 and λ1(φ) = λ13 if φ = −1. One particular choice is given as

λ1(φ) = λ12
(1 + φ)2

2
+ λ13

(1 − φ)2

2
, ε(φ) = ε12

(1 + φ)2

2
+ ε13

(1 − φ)2

2
. (2.5)

In other words, (λ12, ε12), (λ13, ε13) and (λ23, ε23) are the surface tension parameter and
interfacial parameter along the interface of fluid I and II, I and III, II and III, respectively.
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Fig. 1 A schematic illustration
of the three components and
model parameters
distinguished/labeled by two
phase variables

Notice that the coefficient (ψ−1
2 )2 is used to ensure that the interaction between two different

phases (fluid II and III) do not directly influence the bulk of fluid I. Figure 1 illustrates the
model parameters and the three fluid components labeled by the two phase variables ψ and
φ, respectively.

The total energy of the three-phase fluid system is a sum of the kinetic energy Ekin and
the mixing energy Etri

mix [5]:

E = Ekin + Etri
mix =

∫
�

(
1

2
ρ|u|2 + W (φ, ψ,∇φ,∇ψ)

)
dx, (2.6)

where ρ is the density of the fluid system, u is the average fluid velocity. In this model, we
assume ρ is a constant.

Assuming a solenoidal velocity field and following the generalized Onsager principle,
in which the flux associated to the labeling function is proportional to the gradient of the
chemical potential [7,12,21,22,36], one derives the following Allen–Cahn type transport
equations for the phase variables coupled with the momentum transport equation:

ψt + (u · ∇)ψ = −M1μ1, μ1 = δE

δψ
, (2.7)

φt + (u · ∇)φ = −M2μ2, μ2 = δE

δφ
, (2.8)

ρ(ut + (u · ∇)u) + ∇ p = ∇ · σv − μ1∇ψ − μ2∇φ, (2.9)

∇ · u = 0, (2.10)

where p is the hydrostatic pressure, M1 and M2 are the reciprocals of two relaxation time

coefficients, σv = ν(
∇u+(∇u)T

2 ) is the viscous stress with the viscosity ν [20].
In the formulation, we notice that the volume of each phase is not automatically conserved

even if one adopts the Cahn–Hilliard type equations. In fact, the volume Vi , i = 1, 2, 3 for
each phase is given by

V1(ψ) =
∫

�

1 + ψ

2
dx,

V2(ψ, φ) =
∫

�

(1 − ψ)

2

(1 + φ)

2
dx,

V3(ψ, φ) =
∫

�

(1 − ψ)

2

(1 − φ)

2
dx,

(2.11)
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in which two integrands are nonlinear. The following identity always holds though,

V1(ψ) + V2(ψ, φ) + V3(ψ, φ) = |�|. (2.12)

Thus, we modify the free energy functional by adding two penalty terms to conserve V1(ψ)

and V2(ψ, φ), then V3(ψ, φ) is automatically conserved. To this end, themodified free energy
reads as follows.

E = Ekin + Etri
mix + A1(V1(ψ) − α)2 + A2(V2(ψ, φ) − β)2, (2.13)

where α = V1(ψ0), β = V2(ψ0, φ0), A1, A2 are two positive model parameters or Lagrange
multipliers.

Remark 2.1 There is an alternative way to conserve the volume instead of modifying the
free energy functional. For example, one can add a scalar Lagrange multiplier in (2.7) and
(2.8) directly to enforce this conservation property (cf. [33]). However, due to nonlinear
degeneracy of phase variable φ and the nonlinearity of V2 and V3, such a formulation may
be very complicated, which we will not pursue in this paper.

Remark 2.2 Notice that this model automatically satisfies the constraints that the volume
fraction of each phase adds up to be 1, where the original approaches [3,18] require a
Lagrange multiplier to enforce that. This indicates that the model conserves the total volume
of the material system, but not that of each phase. The later has to be enforced by penalizing
potentials.

Remark 2.3 Thismodel is an alternative way to formulate a phase fieldmodel for three-phase
material systems using labeling functions. Assuming label φ does not vary rapidly across
the interface where ψ has a transitional layer, the model does provide a method to yield the
surface tension approximating the sharp interface limit across all three phase boundaries.
This is certainly valid in the case where each phase occupies a reasonably large domain and
away from the triple point. A detailed comparison with the three phase model used in [3,18]
is perhaps in order. But, that is certain beyond the scope of this paper.

For simplicity, we consider in this paper where the three fluids havematching densities and
viscosities i.e.,ρ1 = ρ2 = ρ3 = 1andν1 = ν2 = ν3 = ν.When the threefluids havedifferent
densities with a relative small density ratio, one can use the Boussinesq approximation to
derive an approximation which models the effect of different densities by a gravitational
force [21,33]. The case of different viscosities can usually be dealt with in a straightforward
manner by assuming the viscosity is a linear or harmonic average of the phase functions.

We also assume that (λ12, λ13, λ23) = (λ1, λ1, λ2) and (ε12, ε13, ε23) = (ε1, ε1, ε2) for
simplicity as well. The case of λ12 �= λ13 will bring more complexities induced by nonlinear
couplings in the system, which will be investigated in the future. With the assumptions, the
simplified energy becomes

Etri
mix =

∫
�

(
λ1

(
1

2
|∇ψ |2 + F1(ψ)

)
+ λ2

(
ψ − 1

2

)2 (
1

2
|∇φ|2 + F2(φ)

))
dx . (2.14)
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Then, the system (2.7)–(2.10) reduces to the following in the dimensionless form,

ψt + (u · ∇)ψ = −M1μ1, (2.15)

μ1 = λ1(−�ψ + f1(ψ)) + λ2

(
ψ − 1

2

)( |∇φ|2
2

+ F2(φ)

)
+ A1(V1(ψ) − α)

− A2(V2(ψ, φ) − β)

(
1 + φ

2

)
, (2.16)

φt + (u · ∇)φ = −M2μ2, (2.17)

μ2 = λ2

(
−∇ ·

(
ψ − 1

2

)2

∇φ +
(

ψ − 1

2

)2

f2(φ)

)
+ A2(V2(ψ, φ) − β)

(
1 − ψ

2

)
,

(2.18)

ut + (u · ∇)u + ∇ p = ν�u − μ1∇ψ − μ2∇φ, (2.19)

∇ · u = 0. (2.20)

Throughout the paper, we adopt the following boundary conditions

u|∂� = 0, ∂nφ|∂� = 0, ∂nψ |∂� = 0. (2.21)

Since the above system is consistent with the generalized Onsager principle, it can be
readily established that the total energy of the system (2.7)–(2.10) is dissipative. Namely,
taking the inner product of (2.7) with δE

δψ
, (2.8) with δE

δφ
, and (2.9) with u, and then summing

up these equalities, we obtain the following energy dissipation law:

d

dt
E = −

∫
�

(
ν|∇u|2 + M1

∣∣∣ δE

δψ

∣∣∣2 + M2

∣∣∣δE

δφ

∣∣∣2) dx ≤ 0. (2.22)

We notice that the nonlinear terms in δE
δψ

and δE
δφ

involve second order derivatives so that
it is not convenient to use them as test functions in numerical approximations, making it
difficult to obtain the energy dissipation law in the fully discrete level. To overcome this
difficulty, we have to reformulate the system (2.17)–(2.20) in an alternative form which is
convenient for numerical approximations. We denote the material derivative by

ψ̇ = ψt + (u · ∇)ψ, φ̇ = φt + (u · ∇)φ. (2.23)

The momentum equation (2.19) can be rewritten as follows:

ut + (u · ∇)u − ν�u + ∇ p + φ̇

M2
∇φ + ψ̇

M1
∇ψ = 0. (2.24)

To derive the energy law, we take the inner products of (2.15) with ψt
M1

, (2.17) with φt
M2

, and
(2.24) with u to arrive at

‖ψ̇‖2
M1

−
(

ψ̇

M1
, (u · ∇)ψ

)
= λ1∂t

(‖∇ψ‖2
2

+ (F2(ψ), 1)

)

+ λ2

((
ψ − 1

2

) ( |∇φ|2
2

+ F2(φ)

)
, ψt

)

+A1(V1(ψ) − α,ψt ) − A2

(
(V2(ψ, φ) − β)

(
1 + φ

2

)
, ψt

)
, (2.25)

‖φ̇‖2
M2

−
(

φ̇

M2
, (u · ∇)φ

)
= λ2

(
−∇ ·

(
ψ − 1

2

)2

∇φ +
(

ψ − 1

2

)2

f2(φ), φt

)
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+ A2

(
(V2(ψ, φ) − β)

(
1 − ψ

2

)
, φt

)
, (2.26)

and

1

2
∂t‖u‖2 + ν‖∇u‖2 +

(
ψ̇

M1
∇ψ, u

)
+

(
φ̇

M2
∇φ, u

)
= 0. (2.27)

Here, the inner product of the function f (x) and g(x) and L2 norm ‖ f ‖ is defined as follows:

( f, g) =
∫

�

f (x)g(x)dx, ‖ f ‖ = ( f, f )
1
2 . (2.28)

We notice that the following identities hold.

∂t

((
ψ − 1

2

)2 ( |∇φ|2
2

+ F2(φ)

)
, 1

)
=

((
ψ − 1

2

)2

∇φ,∇φt

)
+

((
ψ − 1

2

)2

f2(φ), φt

)

+
((

ψ − 1

2

) ( |∇φ|2
2

+ F2(φ)

)
, φt

)
, (2.29)

∂t ((V2(ψ, φ) − β)2, 1) = −
(

V2(ψ, φ) − β,

(
1 + φ

2

)
ψt

)

+
(

V2(ψ, φ) − β,

(
1 − ψ

2

)
φt

)
, (2.30)

and

∂t ((V1(ψ) − α)2, 1) = (V1(ψ) − α,ψt ). (2.31)

Summing up the above equalities (2.25)–(2.27) and applying (2.29)–(2.31), we arrive at the
following result:

Lemma 2.1 Solutions of (2.15)–(2.20) satisfy the following energy law:

d

dt
E = d

dt

∫
�

{
1

2
|u|2 + λ1

( |∇ψ |2
2

+ F1(ψ), 1

)
+ λ2

((
ψ − 1

2

)2

,
|∇φ|2
2

+ F2(φ)

)

+ A1(V1(ψ) − α)2 + A2(V2(ψ, φ) − β)2
}

dx

= −
∫

�

(
ν|∇u|2 + |ψ̇ |2

M1
+ |φ̇|2

M2

)
dx ≤ 0.

(2.32)

We note that the above derivation is suitable in a finite dimensional approximation since
test functions φt , ψt are in the same subspaces as φ and ψ . Hence, it allows us to design
numerical schemes which satisfy a discrete energy law.

3 Decoupled Semi-discretized Scheme in Time

The coupled nonlinear partial differential equation system (2.15)–(2.20) presents many chal-
lenges for algorithm design, implementation as well as numerical analysis. In particular, one
has to overcome the following difficulties:
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• the coupling of the velocity and the pressure through the incompressible condition;
• nonlinear couplings among the equations through convection terms and the nonlinear

stress.
• the stiffness in the phase transport equations as well as the nonlinear coupling between

the two phase variables.

It is widely believed that the compliance of discrete energy dissipation laws usually serves as
the justification of fine numerical approximations and results, when no benchmark solutions
are available. In addition, use of energy stable schemes usually enables the use of relatively
large time steps, the size of which is dictated only by accuracy considerations. Therefore,
in this paper, the emphasis of our algorithm development is placed on designing numerical
schemes that are not only easy-to-implement, but also satisfy a discrete energy dissipation
law.

We now construct an energy stable scheme based on a stabilization strategy [29] for a
double well potential to avoid nonlinear iterations. The convex splitting technique can be
applied as well, but the resulted scheme is nonlinear. So, we will not pursue in this study. To
this end, we shall assume that F1(ψ) and F2(φ) satisfy the following conditions: there exist
constant L1 and L2 such that

max|ψ |∈R |F ′′
1 (ψ)| ≤ L1, max|φ|∈R |F ′′

2 (φ)| ≤ L2. (3.1)

One immediately notices that this condition is not satisfied by the usual Ginzburg–Landau
double-well potential. However, since it is well-known that the Allen–Cahn equation satisfies
the maximum principle (for Cahn–Hilliard equation, a similar result is established in [6]),
it is common practice that one truncates this fourth order polynomial to quadratic growth
outside of an interval [−M, M] without affecting the solution if the maximum norm of the
initial condition φ0 is bounded by M . Therefore, one can (cf. [9,17,29]) consider the Allen–
Cahn and Cahn–Hilliard equations with a truncated double-well potential F̃1(φ), F̃2(ψ). It
is then obvious that there exist Li , i = 1, 2 such that (3.1) is satisfied with Fi replaced by
F̃i , i = 1, 2.

The new numerical scheme reads as follows.
Algorithm: Given the initial conditions φ0, ψ0, u0 and p0 = 0, having computed φn , ψn ,
un and pn for n > 0, we compute (φn+1, ψn+1, ũn+1, un+1, pn+1) by

Step 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Cn(φn+1 − φn) + 1

M2
φ̇n+1 = λ2∇ ·

(
ψn − 1

2

)2

∇φn+1 − λ2

(
ψn − 1

2

)2

f2(φ
n)

− A2(V2(ψ
n, φn) − β)

(
1 − ψn

2

)
,

∂φn+1

∂n
|∂� = 0,

(3.2)

with

φ̇n+1 = φn+1 − φn

δt
+ (

un
� · ∇)

φn, un
� = un − δt

φ̇n+1

M2
∇φn . (3.3)
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Step 2:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Sn(ψn+1 − ψn) + 1

M1
ψ̇n+1 = λ1(�ψn+1 − f1(ψ

n)) − λ2

(
ψn+1 − 1

2

)
W (φn+1)

− A1(V1(ψ
n) − α) + A2(V2(ψ

n, φn) − β)

(
1 + φn+1

2

)
∂ψn+1

∂n
|∂� = 0,

(3.4)

with

ψ̇n+1 = ψn+1 − ψn

δt
+ (un

�� · ∇)ψn, un
�� = un

� − δt
ψ̇n+1

M1
∇ψn . (3.5)

and

W (φn+1) = |∇φn+1|2
2

+ F2(φ
n+1). (3.6)

Step 3:⎧⎪⎨
⎪⎩

ũn+1 − un

δt
+ (un · ∇)ũn+1 − ν�ũn+1 + ∇ pn + ψ̇n+1

M1
∇ψn + φ̇n+1

M2
∇φn = 0,

ũn+1|∂� = 0,

(3.7)

Step 4: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un+1 − ũn+1

δt
+ ∇(pn+1 − pn) = 0,

∇ · un+1 = 0,

n · un+1|∂� = 0.

(3.8)

In the above, Cn and Sn are two stabilizing parameters to be determined in simulations.
The above scheme is constructed by combining several effective approaches in the approx-

imation of Allen–Cahn equation [29], Navier–Stokes equations [13] and phase-field models
[4,24,30].

For the new scheme, we give several remarks as follows.

• A pressure-correction scheme [13] is used to decouple the computation of the pressure
from that of the velocity in step 4.

• We recall that nonlinear terms f1 and f2 both take the form like 1
ε2

φ(φ2 − 1), so the
explicit treatment of this term usually leads to a severe restriction on the time step δt when
ε � 1. Thus we introduce in (3.2) and (3.4) two linear “stabilizing” terms to improve
the stability while preserving simplicity. It allows us to treat the nonlinear term explicitly
without suffering from any time step constraint [28–30]. Note that this stabilizing term
introduces an extra consistent error of order O(δt) in a small region near the interface,
but this error is of the same order as the error introduced by treating it explicitly, so the
overall truncation error is essentially of the same order with or without the stabilizing
term. It is noticeable that the truncation error of the stabilizing approach is exactly same
as the convex splitting method.
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• Inspired by [4,24,31], which deal with a phase-field model of three-phase viscous fluids,
we introduce two new, explicit, convective velocities un

� and un
�� in the phase equations.

un
� and un

�� can be computed directly from (3.3) and (3.5), i.e.

un
� =

(
I + δt

M2

(∇φn)T ∇φn
)−1 (

un − 1

M2
(φn+1 − φn)∇φn

)
, (3.9)

un
�� =

(
I + δt

M1
(∇ψn)T ∇ψn

)−1 (
un

� − 1

M1
(ψn+1 − ψn)∇ψn

)
. (3.10)

It is easy to get det (I +c(∇φ)T ∇φ) = 1+c∇φ ·∇φ, thus the above matrix is invertible.
• The scheme (3.2)–(3.8) is a totally decoupled, linear scheme. Indeed, (3.2), (3.4) and

(3.7) are respectively (decoupled) linear elliptic equations for φn+1,ψn+1 and ũn+1, and
(3.8) can be reformulated as a Poisson equation for pn+1 − pn . Therefore, at each time
step, one only needs to solve a sequence of decoupled elliptic equations which can be
solved very efficiently.

• As we shall show below, the above scheme is energy stable. To the best of the authors’
knowledge, this is the first such scheme for a model of ternary phase field model that has
the linear and decoupling properties at the same time.

Theorem 3.1 Under condition (3.1) and

Cn ≥ 1

2
λ2L2

∥∥∥ψn − 1

2

∥∥∥2∞ + A2|�|
∥∥∥1 − ψn

2

∥∥∥2∞,

Sn ≥ 1

2
λ1L1 + A1

4
|�| + A2|�|

∥∥∥1 + φn+1

2

∥∥∥2∞,

the scheme defined by (3.2)–(3.8) admits a unique solution satisfying the following discrete
energy dissipation law:

1

2
‖un+1‖2 + En+1

1 + En+1
2 + δt2

2
‖∇ pn+1‖2 +

{
νδt‖∇ ũn+1‖2 + δt

( |ψ̇n+1|2
M1

+ |φ̇n+1|2
M2

) }

≤ 1

2
‖un‖2 + En

1 + En
2 + δt2

2
‖∇ pn‖2,

where

En
1 = λ1

(
1

2
‖∇ψn‖2 + (F1(ψ

n), 1)

)
, En

2 = λ2

((
ψn − 1

2

)2

,
|∇φn |2

2
+ F2(φ

n)

)
.

(3.11)

Proof From the definition of un
� and u

n
�� in (3.3) and (3.5),we rewrite themomentumequation

(3.7) as follows

ũn+1 − un
��

δt
+ (un · ∇)ũn+1 − ν�ũn+1 + ∇ pn = 0. (3.12)

Taking the inner product of (3.12) with 2δt ũn+1 and using the identity

(a − b, 2a) = |a|2 − |b|2 + |a − b|2, (3.13)

we obtain

‖ũn+1‖2 − ‖un
��‖2 + ‖ũn+1 − un

��‖2 + 2νδt‖∇ ũn+1‖2 + 2δt (∇ pn, ũn+1) = 0. (3.14)
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To deal with the pressure term, we take the inner product of (3.8) with 2δt2∇ pn to derive

δt2
(‖∇ pn+1‖2 − ‖∇ pn‖2 − ‖∇ pn+1 − ∇ pn‖2) = 2δt (ũn+1,∇ pn). (3.15)

Taking the inner product of (3.8) with un+1, we obtain

‖un+1‖2 + ‖un+1 − ũn+1‖2 = ‖ũn+1‖2. (3.16)

We also derive from (3.8) directly that

δt2‖∇ pn+1 − ∇ pn‖2 = ‖ũn+1 − un+1‖2. (3.17)

Combining all identities above, we obtain

‖un+1‖2 − ‖un
��‖2 + ‖ũn+1 − un

��‖2 + δt2(‖∇ pn+1‖2 − ‖∇ pn‖2)
+ 2νδt‖∇ ũn+1‖2 = 0.

(3.18)

Next, we derive from (3.3) and (3.5) that

un
� − un

δt
= − φ̇n+1

M2
∇φn, (3.19)

un
�� − un

�

δt
= − ψ̇n+1

M1
∇ψn . (3.20)

Taking the inner product of (3.19) with 2δtun
� , of (3.20) with 2δtun

�� , we obtain

‖un
�‖2 − ‖un‖2 + ‖un

� − un‖2 = −2δt

(
φ̇n+1

M2
∇φn, un

�

)
, (3.21)

‖un
��‖2 − ‖un

�‖2 + ‖un
�� − un

�‖2 = −2δt

(
ψ̇n+1

M1
∇ψn, un

��

)
. (3.22)

Then, by taking the inner product of (3.2) with 2(φn+1 − φn), we obtain

2Cn‖φn+1 − φn‖2 + 2δt
‖φ̇n+1‖2

M2
− 2δt

(
φ̇n+1

M2
,
(
un

� · ∇)
φn

)

+ 2λ2

((
ψn − 1

2

)2
∇φn+1, ∇φn+1−∇φn

)
+2λ2

((
ψn − 1

2

)2
f2(φ

n), φn+1 − φn

)

+ 2A2

(
(V2(ψ

n, φn) − β)

(
1 − ψn

2

)
, φn+1 − φn

)
= 0. (3.23)

By taking the inner product of (3.4) with 2(ψn+1 − ψn), we arrive at

2Sn‖ψn+1 − ψn‖2 + 2δt
‖ψ̇n+1‖2

M1
− 2δt

(
ψ̇n+1

M1
, (un

�� · ∇)ψn
)

+ 2λ1

(‖∇ψn+1‖2
2

− ‖∇ψn‖2
2

+ ‖∇ψn+1 − ∇ψn‖2
2

)

+ 2λ1( f1(ψ
n), ψn+1 − ψn) + 2λ2

((
ψn+1 − 1

2

)
W (φn+1), ψn+1 − ψn

)
+ 2A1((V1(ψ

n) − α), ψn+1 − ψn)

− 2A2

(
(V2(ψ

n, φn) − β)

(
1 + φn+1

2

)
, ψn+1 − ψn

)
= 0.

(3.24)
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Combining (3.18), (3.21), (3.22), (3.23), and (3.24), we arrive at

‖un+1‖2 − ‖un‖2 + ‖ũn+1 − un
��‖2 + ‖un

�� − un
�‖2 + ‖un

� − un‖2
+ δt2(‖∇ pn+1‖2 − ‖∇ pn‖2)

+ 2νδt‖∇ ũn+1‖2 + 2δt
‖φ̇n+1‖2

M2
+ 2δt

‖ψ̇n+1‖2
M1

+ 2λ1

(‖∇ψn+1‖2
2

− ‖∇ψn‖2
2

+ ‖∇ψn+1 − ∇ψn‖2
2

)
+ 2Sn‖ψn+1 − ψn‖2 + 2Cn‖φn+1 − φn‖2
+ 2λ1( f1(ψ

n), ψn+1 − ψn) (:Term A)

+ 2λ2

((
ψn+1 − 1

2

)
W (φn+1), ψn+1 − ψn

)
(:Term B)

+ 2λ2

((
ψn − 1

2

)2

∇φn+1,∇φn+1 − ∇φn

)
(: Term C)

+ 2λ2

((
ψn − 1

2

)2

f2(φ
n), φn+1 − φn

)
(: Term D)

+ 2A2

(
(V2(ψ

n, φn) − β)

(
1 − ψn

2

)
, φn+1 − φn

)
(: Term E)

− 2A2

(
(V2(ψ

n, φn) − β)

(
1 + φn+1

2

)
, ψn+1 − ψn

)
(: Term F)

+ 2A1(V1(ψ
n) − α,ψn+1 − ψn) (: Term G)

= 0.

(3.25)

We deal with the terms A, B, C, D, E, F, G as follows.
For Term A, we apply the Taylor expansions to obtain

A = 2λ1(F1(ψ
n+1) − F1(ψ

n), 1) − 2λ1

(
f ′
1(ξ)

2
, (ψn+1 − ψn)2

)
. (3.26)

For Term B, we have

B = 4λ2

(
W (φn+1)

(
ψn+1 − 1

2

)
,

(
ψn+1 − 1

2

)
−

(
ψn − 1

2

))

= 2λ2

⎛
⎝W (φn+1),

(
ψn+1 − 1

2

)2

−
(

ψn − 1

2

)2
⎞
⎠ + 2λ2

⎛
⎝W (φn+1),

(
ψn+1 − ψn

2

)2
⎞
⎠ .

(3.27)

For Term C , we have

C = 2λ2

((
ψn − 1

2

)2
,
|∇φn+1|2

2
− |∇φn |2

2

)
+ 2λ2

((
ψn − 1

2

)2
,
|∇φn+1 − ∇φn |2

2

)
. (3.28)

For term D, we apply the Taylor expansion to obtain

D = 2λ2

((
ψn − 1

2

)2

, F2(φ
n+1) − F2(φ

n) − f ′
2(η)

2
(φn+1 − φn)2

)
. (3.29)
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For term E and term F , we have

E + F = 4A2

(
(V2(ψ

n, φn) − β)

(
1 − ψn

2

)
,

(
1 + φn+1

2

)
−

(
1 + φn

2

))

+ 4A2

(
(V2(ψ

n, φn) − β)

(
1 + φn+1

2

)
,

(
1 − ψn+1

2

)
−

(
1 − ψn

2

))
= 4A2

(
V2(ψ

n, φn) − β, (V2(ψ
n+1, φn+1) − β) − (V2(ψ

n, φn) − β)
)

= 2A2
(
(V2(ψ

n+1, φn+1) − β)2 − (V2(ψ
n, φn) − β)2

)
− 2A2

(
V2(ψ

n+1, φn+1) − V2(ψ
n, φn)

)2
. (3.30)

For Term G, we derive

G = 2A1(V1(ψ
n) − α,ψn+1 − ψn)

= 4A1

(
V1(ψ

n) − α,

(
1 + ψn+1

2

)
−

(
1 + ψn+1

2

) )

= 4A1

(
V1(ψ

sn) − α,
(
V1(ψ

n+1) − α
) − (

V1(ψ
n) − α

) )

= 2A1

((
V1(ψ

n+1) − α
)2 − (

V1(ψ
n) − α

)2) − 2A1
(
V1(ψ

n+1) − V1(ψ
n)

)2
.

(3.31)

Finally, combining (3.25), (3.26)–(3.29), and dropping some positive terms, we obtain

‖un+1‖2 − ‖un‖2 + δt2
(‖∇ pn+1‖2 − ‖∇ pn‖2) + 2νδt‖∇ ũn+1‖2

+ 2δt

( |ψ̇n+1|2
M1

+ |φ̇n+1|2
M2

)

+ 2λ1

(‖∇ψn+1‖2
2

− ‖∇ψn‖2
2

)
+ 2λ1

(
F(ψn+1) − F(ψn), 1

)

+ 2λ2

(
W (φn+1),

(
ψn+1 − 1

2

)2
)

− 2λ2

(
W (φn),

(
ψn − 1

2

)2
)

+ 2A1
(
(V1(ψ

n+1) − α)2 − (V1(ψ
n) − α)2

)
+ 2A2

(
(V2(ψ

n+1, φn+1) − β)2 − (V1(ψ
n, φn) − β)2

)
+ (2Sn − λ1L1)‖ψn+1 − ψn‖2 +

(
2Cn − λ2L2

∥∥∥(
ψn − 1

2

)2 ∥∥∥∞

)
‖φn+1 − φn‖2

≤ 2A1
(
V1(ψ

n+1) − V1(ψ
n)

)2 + 2A2
(
V2(ψ

n+1, φn+1) − V2(ψ
n, φn)

)2
.

(3.32)

The last two terms on the right are estimated as follows.

(V1(ψ
n+1) − V1(ψ

n))2 = 1

4

(∫
�

(ψn+1 − ψn)dx

)2

≤ 1

4
|�|‖ψn+1 − ψn‖2.

(3.33)

(V2(ψ
n+1, φn+1) − V2(ψ

n, φn))2 =
( ∫

�

(
1 − ψn+1

2
− 1 − ψn

2

)(
1 + φn+1

2

)
dx

+
∫

�

(
1 − ψn

2

) (
1 + φn+1

2
− 1 + φn

2

)
dx

)2
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=
(

− 1

2

∫
�

(ψn+1 − ψn)

(
1 + φn+1

2

)
dx

+1

2

∫
�

(
1 − ψn

2

)
(φn+1 − φn)dx

)2

≤ 1

2

(∫
�

(ψn+1 − ψn)

(
1 + φn+1

2

)
dx

)2

+1

2

(∫
�

1 − ψn

2
(φn+1 − φn)dx

)2

≤ 1

2

∥∥∥1 + φn+1

2

∥∥∥2∞
(∫

(ψn+1 − ψn)dx

)2

+1

2

∥∥∥1 − ψn

2

∥∥∥2∞
(∫

�

(φn+1 − φn)dx

)2

≤ 1

2

∥∥∥1 + φn+1

2

∥∥∥2∞|�|‖ψn+1 − ψn‖2

+1

2

∥∥∥1 − ψn

2

∥∥∥2∞|�|‖φn+1 − φn‖2. (3.34)

Therefore, the terms from (3.33) and (3.34) can be absorbed into the corresponding stabilizing
terms of Cn and Sn , we obtain the desired result.

Remark 3.1 The stability condition of Cn only depends on the solution of ψn that is known
at t = tn . More significantly, in spite of the fact that the stability condition of Sn depends on
the solution of φn+1 at t = tn+1 step, but φn+1 is already known from step 1 while computing
step 2.

4 Numerical Results and Discussion

In this section, we conduct some numerical experiments using the numerical scheme con-
structed in Sect. 3 to illustrate its efficiency in resolving interfacial dynamics of three-phase
viscous fluid flow problems. In all numerical simulations, after we pre-assign the interfacial
thickness parameters εi , i = 1, 2, the grid resolution is determined to ensure that the inter-
faces are fully resolved, and the time step is set small enough to attain the desired accuracy.

We note that a detailed parameter study is essential for investigating the physical properties
of the proposed three-phase field model. However, in this paper, our focus is to illustrate the
efficiency of our proposed energy stable numerical scheme. Therefore, we will use a fixed
set of model parameters.

4.1 Spatial Discretization and GPU Implementation

For the spatial operators in the scheme, we use second-order central finite difference methods
to discretize them over a uniform grid, where the velocity fields are discretized at the center
of mesh surface, and pressure p, phase variables (φ and ψ) are discretized at the cell center,
as shown in Fig. 2. The boundary conditions are handled by ghost cells.

The fully discretized equations in the scheme are implemented on GPUs (graphic process-
ing units) in 3D space for high-performance computing. To better utilize the performance
of the GPU, we store all variables in the global memory and store all parameters and mesh
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Fig. 2 Variable locations on the
3-D staggered grid

information (which do not change during the simulation) in the constant memory such that
it drastically reduces the latency of data access.

One advantage of using GPUs is their virtual allocations of processors (we can claim as
many thread labors as we desire, even if it is beyond the existing number of multiprocessors
on the physical device). Therefore, in our implementation, we allocate as many processors
as the degrees of freedom allow.

4.2 Convergence Test in 2D

We first test the convergence rate of the proposed scheme in a 2D domain for time dis-
cretization, where Lx = L y = 1, and we choose ε1 = ε2 = 0.01. In order to eliminate
the disturbance from the space discretization, we use 512 × 512 grids in space. We set the
exact solution as follows by modifying the governing system of equations through adding
appropriate forcing terms.

ψ(t, x, y) = 2 + sin(t)cos(πx)cos(πy),

φ(t, x, y) = 2 + cos(t)cos(πx)cos(πy),

u(t, x, y) = πsin(2πy)sin2(πx)sin(t),

v(t, x, y) = −πsin(2πx)sin2(πy)sin(t),

p(t, x, y) = cos(πx)sin(πy)sin(t).

In Fig. 3, we show the L1, L2 and L∞ error at t = 1 using the time step size δt = 2× 10−3,
10−3, 5×10−4, and 2.5×10−4, forψ, φ, u and v, respectively.We observe that the accuracy
of our numerical scheme is at least first-order accurate in time.

4.3 Numerical Examples in 3D

The 3D computational domain is set at � = [0, Lx ] × [0, L y] × [0, Lz] where Lx , L y, Lz

are the domain lengths along the x, y, z axis, respectively. The time step δt is set to be small
enough to ensure the obtained numerical results are approximate solutions of the system. In
all the numerical studies presented below, we set following parameter values at

δt = 10−3, ε1 = ε2 = 0.01, M1 = M2 = 10−3. (4.1)

Next, we present three numerical examples in 3-dimensional space to illustrate the use-
fulness of the three-phase model and the efficiency of the numerical method.
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Fig. 3 Temporal convergence rates. The error plots are taken in the norms of L1, L2, L∞ for phase variables
ψ , φ and velocity field u = (u, v), respectively. The slopes of all error curves are close to 1. a The error plot
for phase variable ψ . b The error plot for phase variable φ. c The error plot for velocity component u. d The
error plot for velocity component v
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Fig. 4 Dynamics of coalescence of two kissing bubbles. Snapshots are taken at t = 0, 0.5, 1, 2, 3, 4, 5, 6, 7,
respectively. The color in blue (ambient fluid), red (smaller bubbles) and yellow (bigger bubbles) represent
fluids I, II, and III respectively (Color figure online)

Fig. 5 Discrete energy plot with time during the coalescence process in Example 2
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Example 1 Coalescence of twokissingbubblesWesimulate the dynamic coalescent process
of two kissing bubbles, each of which is of the core-shell structure of two different viscous
fluids. The computational domain is set at Lx = L y = Lz = 1. A 128 × 128 × 128 spatial
grid is used. Surface tension parameters are set at λ1 = λ2 = 1. Initially, two identical
bubbles with the same size and same internal core-shell structure are placed next to each
other. In the core-shell structure, the core, a smaller bubble with half of the radius of the
larger one is situated at the center inside the larger bubble. We set the fluid outside the bigger
bubble as fluid I, the fluid inside the smaller bubble as fluid II, and the rest as fluid III. With
this initial setup, we simulate dynamics of the bubbles and depict the dynamical process of
coalescence in Fig. 4. At the beginning, it is the fluid in the shell first to merge. At about
t = 4, the two smaller bubbles collide and start to further coalesce. At t = 7, the merging
process completes and the final steady state is one bigger bubble enclosing a smaller bubble
at the center, a whole new core-shell structure. This dynamical process is the combination of
the surface tension effect and the elastic effect from the stress. To illustrate that our numerical
scheme indeed respects the discrete energy dissipation law proved in the last section, we plot
in Fig. 5 the evolution of the discrete total energy during the coalescence process.We observe
from this plot that the discrete energy indeed decays with time.

Example 2 Liquid lens between two stratified fluids. In the second example, we simulate
the steady state of a liquid lens which is initially spherical sitting at the interface between two
other immiscible viscous fluids shown in Fig. 6. The computational domain is once again
Lx = L y = Lz = 1, in which 128 × 128 × 128 spatial grids are used. We set the fluid drop
or the lens as fluid I, the upper half as fluid II and the lower half as fluid III. In the numerical
experiments, we compare the steady states for different surface tension parameters in Fig. 7.
When the surface tension among all three components are identical, the steady state shape
of the liquid lens is shown in Fig. 7a. When the surface tension between the liquid lens and
the neighboring fluid is larger than that between the adjacent fluids (II and III), the lens
becomes thicker, shown in Fig. 7b. When the surface tension between the liquid lens and
the neighboring fluid is smaller than that between the adjacent fluids, the liquid lens tends
to be thinner, shown in Fig. 7c. The numerical results are quantitatively consistent with the
“partial spreading” case simulated by the three-component Cahn–Hilliard phase field model
proposed in [3,18]. This shows that the new three-phase model can model the phenomenon
as well as the traditional three-phase model.

Fig. 6 3D view and 2D cut-off plane of the initial profile of the liquid lens between stratified fluids in
Example 3
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Fig. 7 The steady state of the liquid lens between two stratified fluids for different surface tension parameters.
The color in yellow (lens), red (upper half) and blue (lower half) represent fluids I, II, and III respectively.
a 3D view and 2D cut-off plane of the liquid lens for (λ1, λ2, λ3) = (1, 1, 1). b 3D view and 2D cut-off
plane of the liquid lens for (λ1, λ2, λ3) = (2, 2, 1). c 3D view and 2D cut-off plane of the liquid lens for
(λ1, λ2, λ3) = (1, 1, 2) (Color figure online)

Example 3 A rising bubble through a stratified viscous fluid layer. In the third example,
we simulate a viscous fluid bubble rising up through a stratified fluid layer composed of two
viscous fluids driven by a gravity force, where we set the gravity pointing to the upward direc-
tion.We consider the case where the density difference of the viscous drop and other ambient
fluids is small so that we can use the Boussinesq approximation [5,21] in the momentum
equation as follows:
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Fig. 8 Dynamics of a rising bubble. Snapshots are taken at t = 0, 1, 2, 4, 5, 6, 7, 8. The color in yellow
(bubble), blue (lower half) and red (upper half) represent fluids I, II, and III respectively (Color figure online)

ρ0(ut + (u · ∇)u) + ∇ p = ∇ · σvis − μ1∇ψ − μ2∇φ + fgtyez, (4.2)

where ez = (0, 0, 1) and the external force is given as

fgty = −1 + ψ

2
(ρ1 − ρ0)g0 − 1 − ψ

2

(
1 + φ

2
(ρ2 − ρ0) + 1 − φ

2
(ρ3 − ρ0)

)
g0, (4.3)

where ρ0 is the background density, ρ1, ρ2, ρ3 are the densities for each phase, and g0 is the
gravity acceleration. We set ρ0 = ρ2 = ρ3 = 1, ρ1 = 2, λ1 = λ2 = 1 and g0 = 80. The
computational domain is Lx = L y = 1, Lz = 2, with 128 × 128 × 256 spatial grids.

Figure 8 shows the upward motion of a viscous fluid bubble (Fluid I with ψ = 1) that
penetrates a fluid–fluid interface (Fluid II: lower, Fluid III: upper). At t = 0, the bubble is
immersed in the lower fluid, where the fluid–fluid interface is horizontal and all phases are at
rest. Due to the gravity force, as time evolves, the bubble starts to rise up, and then penetrates
through the fluid interface with a long and thin filament trapped behind at t = 7. Even after
the filament pinches off, a small amount of fluid II is still trapped at the lower surface of the
bubble at t = 8. Qualitatively, this is consistent to the simulations obtained using the sharp
interface model in [2,10].

5 Concluding Remarks

Wehave developed an energy stable numerical scheme for the three-phase fieldmodel consist-
ing of Allen–Cahn type phase-field models coupled to the Navier–Stokes equation proposed
in [5]. We first modified the free energy functional in the model to conserve the volume
of each phase and satisfies total energy dissipation, then reformulated the model to a form
which is suitable for numerical approximations. We then constructed a numerical scheme
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based on a stabilization technique. The scheme possesses the following properties: (i) it leads
to completely decoupled elliptic equations in space to solve at each time step; (ii) it is stable
and obeys a discrete energy law; and (iii) all elliptic equations are linear so that fast solvers
can be employed. Hence, the numerical scheme is extremely efficient.

This is the first numerical scheme for phase-fieldmodels of three-phase viscous fluid flows
that decouples the computations of all phase field variables, the velocity, and the pressure
leading to linear, elliptic equations at each time step. Our mesh refinement tests confirm the
convergence rate. We then presented three numerical examples to illustrate the usefulness of
the three-phase field model and the efficiency of the proposed scheme.
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