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Abstract of the Dissertation
Turbulent Mixing with Scale Breaking Phenomena
by

Xinfeng Liu

Doctor of Philosophy
in

Applied Mathematics and Statistics
Stony Brook University

2006

Advisor: James Glimm

We study the Rayleigh-Taylor (RT) instability in both the moderately compressible and
weakly compressible regimes. Rayleigh-Taylor mixing is an acceleration driven instability
of a layer separating two fluids of distinct densities. For the two dimensional single mode
case, we find that the dimensionless terminal velocities (and associated Froude numbers)
are nearly constant over most of this region of parameter space, as the thermodynamic
parameters describing the equation of state are varied. The phenomenological drag coefficient
which occurs in the single mode buoyancy-drag equation is directly related to the terminal
velocities and has a similar behavior. Pressure differences and interface shape, however,
display significant dependence on the EOS parameters even for the weakly compressible
flows. For three dimensional multimode mixing, we expect that density stratification rather

than drag will provide the leading compressibility effect. We develop an analytical model
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to account for density stratification effects in multimode self-similar mixing. Our theory
is consistent with and extends numerically based conclusions developed earlier which also
identify density stratification as the dominant compressibility effect for multimode three
dimensional mixing.

New simulations with Locally Grid Based Front Tracking Method compare Rayleigh-
Taylor mixing rates for ideal fluids and for real fluids with experimental values for surface
tension or mass diffusion. The simulated real fluid mixing rates agree with those measured
experimentally. Comparison to theoretical predictions relating the mixing rate, the bubble
width and the bubble height fluctuations based on bubble merger models shows similar
agreement with experiment. The ideal fluid mixing rate is some 50% larger, providing an
example of the sensitivity of the mixing rate to physical scale breaking interfacial phenomena;
we also observe sensitivity to numerical scale breaking artifacts.

Key Words: Rayleigh-Taylor instability, front tracking method, surface tension, mass

diffusion.
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Chapter 1

Introduction

Chaotic mixing is a common and important phenomena in basic science and in engi-
neering applications. Small disturbances in a multifluid system produce buoyancy and shear
driven instabilities at an interface between distinct fluids [9]. These instabilities grow and
develop into turbulent mixing zones consisting of bubbles of light fluid and spikes of heavy
fluid, each penetrating into the opposite fluid. The evolution and structure of these mixing
zones have been studied for several decades. See for example [32,40,47,51]. The location
of the two edges of the mixing zone plays a distinguished role, as the simplest and primary
descriptor of the mixing process. The study of mixing processes is not only of theoretical
interest. It also plays an important role in the study of inertial confinement fusion and late

time supernova evolution.

The Rayleigh-Taylor (RT) instability occurs when a fluid of low density, p;, accelerates a
fluid of heavy density, p,. This, and related mixing problems have attracted the attention of
leading physicists and mathematicians, beyond Rayleigh and Taylor, and including Kelvin,
Wheeler, Garabedian, Birkhoff, and Chandrasekhar among others.

The RT mixing rate is the dimensionless coefficient « in the equation

h = aAgt? (1.1)



for the height h of the bubbles, i.e., the interpenetration distance h of the light fluid into the
heavy fluid. Here A = (p, —p;)/(pn+p) is the Atwood number and ¢ is the time. Acceptable
experimental values for « are o = 0.063 & 0.013 [48]. See [47] for background information.
With no surface tension or mass diffusion in the simulation, we find an increased mixing
rate. For ideal fluid flow, we find the value o = 0.09. However, using physical values of
surface tension (for immiscible fluids from [44, 48]), we find o = 0.067. Also o = 0.069 for
miscible fluids with physical values for mass diffusion [6]. The h vs. Agt? plot has a straight
line shape after an initial transient, and we here report the slope obtained by joining the
initial to the final point. Defining « in terms of the slope after the initial transient gives a
slightly lower value 0.060 for the immiscible fluids. (Here we interpolate between adjacent

simulations.)

The dynamical equations governing fluid flow are based on the principles of conservation
of mass, momentum, and energy. To complete the system, an equation of state (EOS) relating

the state variables is necessary. The equations are

)
LAV () =0,

ot

@—l—V-pverVP:pg—i-V-nj, (1.2)
O(pE 0
(apt)+V-((pE+P)v):pv-g—l—a—?—v-q—l—v-(Tijv).

9z1’ 9z’ O3

Here p is density, V = < 0 o0 0 >, v is the velocity vector, P is the pressure, g is gravity,

Tij = [,u (g;? + %) — %&jﬂg—x] is the viscous stress tensor with dynamic viscosity u, E is
7 A
the total specific energy, @) is the external heat added per unit volume, and ¢q is the heat

flux vector.

The system of equations above is known as the Naiver-Stokes Equations, and the viscous

stress tensor 7 discusses the internal friction (viscosity) of the fluid. This internal friction
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results in a resistance to flow. Although every fluid has some amount of internal friction,
many fluids can be modeled quite accurately while neglecting the viscosity. Such fluids are

called ideal.

For ideal fluids the system reduces to

dp B
E—FV-(pv)—O,

0
% + V- (pvv) =VP+pg, (1.3)

%—FV-((pE—l—P)v):pv-g.

The Euler equations in three dimensions are used to model the Rayleigh-Taylor instability.

Front tracking provides sharp resolution of wave fronts through the active tracking of
interfaces between distinct materials. It is a numerical method that represents interfaces
explicitly as a lower dimensional mesh moving through a volume filling grid. The time
step of the front tracking code FronTier consists of two parts, the finite difference interior
solver for the states defined on the volume filling rectangular grid and front propagation
for the front position and states defined on each side of the front, see [12,24, 25,27, 28, 33].
This propagation of the front points and front state variables distinguishes front tracking
from other numerical methods. We use a directionally split method, which breaks the front
propagation into normal and tangential steps. For the normal front propagation, we project

Eq. (1.3) to the front normal direction to yield the one dimensional system

dp | Opun _ 0
oo ON
0 d(pvy + P
PUN i (pv ) — ogn,
ot ON (1 4)
Opur N Opvnvr 0 '
ot ON
OpE N 0 (pEvy + Puy) Y
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where 8% is the directional derivative in the normal direction ]\7, UN =V - ]\7, gy =g - ]\7,

and vr = v — oy N is the tangential velocity component.

The tangential projection of Eq. (1.3) is given by

0

8—5+VT-(va):0,

0

%JrVT-(pvv)JrVTP:PQT, (1.5)
J(pE

%WLVT'((PEJFP)U):PUT'QT-

Tracked Curve

Tracked Curve

Figure 1.1: A schematic showing the normal propagation stencil of states used in propagating
a front point. For simplicity the diagram is shown for two spatial dimensions.

The normal propagation consists of two basic steps, prediction using Riemann problem
solutions, and correction to account for flow gradients on either side of the front and to

include body or geometry source terms. At material interfaces surface tension may also be
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included by modifying the Riemann problem solution to allow a pressure jump proportional
to the mean curvature at the point being propagated. For the tangential sweep, since it
reduces to a regular finite difference stencil, any of a variety of standard solvers may be used
to compute the solution. In contrast to the normal sweep, no additional motion is accounted

for in the tangential direction.

[
r 3 )
At (ot AD), 1,+A7) @ .
/
/
% c(r O) I,
/
{ o o o o—
0
st sl; sly sry STy Sy
[
a
b
(ot Al )
s, sl, sly=sl  sry=sr sr, sr

Figure 1.2: The normal propagation project the flow state onto a line normal to the interface
point. A one dimensional Cauchy problem is solved to compute an updated front position
and state.

Chapter 1 gives a brief review of the Rayleigh-Taylor mixing rates.
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Chapter 2, Chapter 3 and Chapter 4 are the core of my work. In Chapter 2, the single
mode RT simulations at terminal velocity are not affected by density stratification, but due
to the much longer time and perturbation heights needed to achieve self-similarity for multi
mode RT flows, density stratification is a leading compressibility effect for multi mode flows.
The stratification is measured by a time and space dependent Atwood number. In §2.2,
we propose a simple physics model for this stratification. The ambient fluids are assumed
(at ¢ = 0) to be isothermal. The penetrating fluids are assumed to have a single pressure
at the bubble and spike tips and to change isentropically as they are displayed from their
t = 0 isothermal state. Then formulas (2.8) and (2.9) yield a model for A = A,(z,t) and
A = Ay(z,t) at the bubble and spike tips. These formulas are compared to direct simulation
data. On the basis of §2.1 results, we assume that the drag coefficient is only weakly sensitive
to compressibility. On the basis of these two assumptions, we examine the solutions of the
buoyancy drag equation to predict compressibility effects on multimode RT mixing rates.
We find density stratification as the leading compressibility effect. These predictions are

compared to Direct Numerical Simulations.

In Chapter 3 and Chapter 4, we compare new simulations of Rayleigh-Taylor mixing
rates for ideal fluids and for real fluids with experimental values for surface tension or mass
diffusion, based on an improved Front Tracking code [18]. The primary improvement is to
use local grid based tracking, which greatly minimizes the interpolative smoothing of the
interface during time steps which display interface bifurcation. The grid based algorithm
previously used handles bifurcations robustly, but with excess interpolation, and now the
grid based reconstruction is applied only in local regions where needed and not globally as
before. Detailed comparison [18] documents the advantage of the new algorithm relative to
the old, in reducing excess smoothing of the interface, and its advantages relative to other
interface algorithms such as level sets [38] and volume of fluids [45] algorithms. Untracked

simulations are by a total variation diminishing (TVD) algorithm.
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Simulated mixing rates of Rayleigh-Taylor instability for miscible fluids with physical
mass diffusion are shown to agree with experiment; for immiscible fluids with physical values
of surface tension the numerical data lies in the center of the experimental values. The
simulations are based on an improved front tracking algorithm to control numerical surface
tension and on improved physical modeling to allow physical values of mass diffusion or
surface tension. Compressibility, after correction for variable density effects, has also been
shown to have a strong influence on mixing rates. In summary, we find significant dependence
of the mixing rates on scale breaking phenomena. We introduce tools to analyze the bubble
merger process and confirm that bubble interactions, as in a bubble merger model, drive the
mixing growth rate.

The conclusion is presented in Chapter 5.



Chapter 2

Compressibility Effects on Rayleigh-Taylor Mixing

Rates

In this chapter, we examine first the well studied case of a single mode RT instability,
i.e., a periodic array of identical modes, consisting of bubbles of light fluid rising into the
heavy fluid and spikes falling into light fluid, under gravitational acceleration of an initially
unstable (heavy over light) configuration. The modes grow initially at an exponential rate

but eventually saturate, and achieve a terminal velocity

Vsl = Chsv/Agh (2.1)

with an Atwood number A = (p, — p1)/(p2 + p1) expressing the contrast in fluid densities
between p; = plight and pa = pheavy; ¢ = ¢(t) the gravitational acceleration, and A the
width of the periodic channel. Here the subscript “b” denotes bubble (light fluid penetrating
into heavy fluid) and “s” denotes spike. Cj, is called the Froude number and it has been
studied theoretically [8,19, 37] and numerically [53]. For bubbles, it has the values Cj, = 0.23
in two dimensions and C, = 0.34 in three dimensions for A = 1 according to analytic

theories [8, 19, 37] confirmed by experiment and two dimensional simulations [42]. Alternate
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forms of (2.1) have been proposed [43] with A replaced by 2A/(A £ 1) when A < 1,

Vis | = Cb,s\/ PR Chs = Cbys\/ S (2.2)

A more fundamental finite A theory for (), with a more complicated A dependence has
been presented recently [3,4]. A correction to this basic picture was identified as a late time
oscillation in Vj , about some mean value [29]. Moreover, the A = 1 Froude number in 3D
depends on the planar symmetry group of the periodic bubbles [1,2] and this effect should
hold forA < 1 also.

We discuss compressibility effects in RT mixing. We show in §2.1 that bubble and spike
terminal velocities, i.e., the C, ¢ and the related single mode drag coefficients introduced
below are relatively insensitive to the compressible equation of state (EOS) parameters over
the range of parameters we examine, for moderately compressible and nearly incompressible
flows. However, a detailed examination of the interface shapes and of the pressure differences
between the heavy and light fluids, averaged at a common height, shows a strong dependence
on EOS parameters. Thus convergence to a unique incompressible limit is not achieved within

the very slightly compressible flows considered here.

We measure compressibility through the pseudo Mach number

a, = YA (2.3)

C;

where ¢; is the sound speed in fluid i. In view of (2.1),

x Mach number (2.4)

1
M; =
Ctb,s\/Z

is approximately five times the Mach number (|V;|/c;) of the bubble or spike tip at its

terminal velocity for the value of A = 1/3 considered here. The dimensionless parameters
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governing compressible single mode RT mixing are M;, A and the EOS.

The complete EOS of a compressible fluid contains an infinite number of parameters.
These should become irrelevant in the limit M? — 0. For simplicity, we consider a simple

model for the EOS, the stiffened y-law gas, defined by the incomplete EOS

pc? =y(p+ Px) (2.5)

where P, is a constant with the dimension of pressure. The RT instability with this EOS
depends on four thermodynamic parameters, vi, 72, Pio and Pss, as well as the flow pa-
rameters A and M, (M, is determined from M, and the thermodynamics). M? can also be
understood as giving a length scale (in units of A) over which compression induced density
changes occur. Hydrostatic equilibrium is defined as a solution of the static momentum

equation

dp

— = . 2.6
7 =Py (2.6)
The dependence of p (and thus p) on z can be specified initially by an arbitrary function of

zZ.

Two natural choices for this initial p(z) are defined by isothermal or isentropic thermo-
dynamics. Assuming an isothermal initialization and a stiffened ~-law gas, the sound speeds

are initially constant in each fluid and the density satisfies

dp  pg
_—=—. 2.7
dz c? (2.7)
Eq. (2.7) is integrated to yield
Yi9(% = Zin VM (2 — 2in
pi(2) = pf exp [%} =p; eXp{ (A t)} : (2.8)



where 2y, is the initial mean interface position and p) is the density of fluid ¢ at z = 2.
For a bubble or spike penetrating into an isothermally stratified ambient fluid, we assume
a common horizontally averaged pressure in the two fluids as a function of z and isentropic
density stratification in the penetrating phase. Using the ambient pressure from (2.7) and

(2.8), we derive the formula

1

IM2, Z — Zin i
pi(2) = pY {'Eoexp {% l()\ t)} —7;0—1-1} , (2.9)
where
CT MY T Pt P TP |
is the relative stiffness of two fluids, p; = py = Py is the single pressure at z = z,; and

the primed index i’ denotes the fluid complementary to fluid i, i.e., i’ = 3 — i. Notice that

0 _1: _
T’ =11in case Py = Py

2.1 Single Mode Mixing Rates

Multimode (chaotic) mixing rates are defined as solutions of the the buoyancy drag
equation

d2Zi zczdpl,‘/?

(pi + HiPi’)W = (pi — pir)g — (1) R (2.11)

This equation describes the one dimensional motion of the interfaces of an acceleration
driven mixing layer. Here i = 1 (bubble) and i = 2 (spike) denote the light and heavy fluids,
respectively, V; = Z,(t) = dZ;/dt and i' = 3 —i. p; is the mass density of fluid i, x; is an
added mass coefficient due to the existence of fluid i, and C? is a phenomenological drag

coefficient for the edge of fluid i, which has the functional form [10]

ci(a) = Lol +2(;1)i‘4] —ali (2.12)

12



where L; = 1 — (—1)’Ai and «; is the mixing rate of bubble height (i = 1) or spike height

We discuss the buoyancy drag equation (2.11) for single mode RT mixing with cylindri-
cal compressible front bubbles and spikes (k; ~ 1). Since dV;/dt = 0 at the terminal velocity,

Vi = V,*°, we obtain

L vy
Ag = = )
2 |Z

(2.13)

where C* denotes the single mode value of C%. From (2.13), we evaluate the terminal

2A9|Z;| | 2
— JAg\ x 2.14
L;C%* g L;C%* (2.14)

by setting A = |Z;|. The identity (2.14) shows the dependence of V;** on 2A/L; = 2A/(1 —

velocity

(—1)!A) which replaces A in an alternate form of (2.1). The comparison of (2.14) with (2.1)

[ 2
Cis = . 2.15
1,2 LiCZd’s ( )

gives the Froude number

2.1.1 Zhang’s Model

The conventional bubble (spike) velocity development for the single mode RT instability
has three different stages: linear, free fall, and terminal velocity regime. Qiang Zhang pro-
posed an ODE model to fit such a velocity profile. There are four parameters to characterize
the motion of the spike or bubble: the growth rate § in the linear regime, the renormalized
gravity gr in the free fall regime, the terminal velocity v, in the terminal velocity regime,
and the decay rate § from free fall to terminal velocity. The assumption is that the velocity

profile should satisfy the equation

— = Bo(l = —)f(v), (2.16)



where f(v) is a positive function satisfying f(0) = 1 and f(v) = /5. Since o and vy
appear in Eq. (2.16) already, there should be two parameters in the function f(v). Assume

f(v) has the form
1

= 2.1
) 14 $10/v + P20? /562 (247
where ¢, and ¢, are dimensionless constants. Eq. (2.16) becomes
v(l — =
dv poll — 3.)) . (2.18)

A 1 610/v0 + P02 0o?

To solve for the parameters ¢, and ¢o, the maximum v; of the acceleration in Eq. (2.18),
one needs to satisfy the linear growth rate /3, and the terminal velocity decay rate 6/ in

Eq. (2.17). From Eq. (2.18), the maximum acceleration v; satisfies

v v
1—2@—f—(¢1+¢2)07f:0. (2.19)

o0 o0

From Eq. (2.19) and the maximum v; in Eq. (2.16), we have

Voo — 205

¢1+ dg = Voo — =0, (2.20)
Us
and
) 1
O )= — 2.21
51 (o) = 77 . (2.21)
The renormalized gravity is given by setting v to vy in Eq. (2.18),
ve(l — v/

- 1 + (]51’Uf/’Uoo + ¢2U%/’U§O ’
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Thus ¢; and ¢, are obtained through the solution of Egs. (2.19), (2.20), and (2.21).

¢ = B;—: —2(1+ ?) : (2.23)
and
by = —% —2(1+ g)Z : (2.24)
Eq. (2.18) can be rewritten as
v
E+(1—g)+ g—:—(1+ 5)2] @(1_@)

The solution for Eq. (2.25) is

Voo — U

1. {1 1 1,1 ] 1
t—to==In(—)+ |——(—=+—=)"—| (vt —v9) — =In , 2.26
e L R P R [T R e SR CED
and the solution for the spike or bubble position is
1 1 1 1] v2—w?
st = (G- Plu— )t | = (G- oyl M0
oo Yo = Tty

For an incompressible one fluid system (A = 1, M? = 0) with wave length A, the bubble
terminal velocity is given by
pPUbPle( A — 1 M2 = 0) = 0.23(\g)"/? . (2.28)

o0

By using the front tracking method and numerical data fitting, Zhang proposed the following
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2D single mode terminal velocity formulas: For the bubble,

U0 o M2A +0.23MAV? (2.29)
Ch
? = ¢, M?A+ ¢, MAY? (2.30)
h
and
Jgr 2 CRMA
IR _ cpA 2.31
q R + 1 + CRM ( )

From a dimensional argument, the terminal velocity of the bubble should be propor-
tional to /g, t.e., v = c1/Ag. Here ¢y is the constant of proportionality and it is a

function of the dimensionless parameters A, M, and ~ only. From Eq. (2.29) we have

¢ = 0.15MA +0.234Y2 (2.32)

Since the same value v = 1.4 is used in all simulations, the dependence of ¢; on 7 is

not explored in Zhang’s model.

2.1.2 Compressible EOS Effects

In this section, we show, through an extensive simulation study, that the drag coeffi-
cients S and Froude numbers have small sensitivity to EOS parameters in the moderate to
weak compressibility regime. In spite of this fact, we show striking EOS dependence even for
very weakly compressible flows. The dependence is obvious in the shape of the interface at
the time the terminal bubble velocity is achieved, see Fig. 2.1, and in the strong dependence
of pressure differences (and pressure drag) on EOS parameters, both for weakly compressible

flows.

We performed a systematic study of 2D Rayleigh-Taylor single mode instability simu-
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Figure 2.1: The front plots at terminal velocity for the four cases in Table 2.1-2.2. Here
M, = 0.05. Gravity g points upward here, so that the bubble tip is located at the bottom
of each figure.

lations, using the front tracking code FronTier, with different EOS parameters as in (2.5).
In our simulations, we set the Atwood number A = 1/3. The initial configuration of the
system contains a small amplitude, single sinusoidal mode interface with periodic boundary
conditions on the left and right side of the computational domain of width A. The top and
bottom of the computational domain are Neumann boundaries. The initial amplitude of the
perturbation is set to 0.015A. The positions of the interfaces and the states of the system are
updated by applying the front tracking method to the full two-dimensional Euler equations.
All the numerical results use a 160 x 1600 grid in a 1 x 10 computational domain. It is known
that the bubble velocity has gradual oscillations associated with gradual shape changes in
the bubble and spike, after first reaching a maximum velocity [3], so that the notion of ter-
minal velocity for A < 1 is not a precisely defined concept. We take the terminal velocity to
be the velocity at the first maximum in these oscillations. We record the first peak as the
terminal velocity, after which the velocity is weakly oscillatory as seen in Fig. 2.2. For the
pressure differences and drag ratios (bubble or spike), Dj . = {pressure drag}/{form drag},

there are rapid small oscillations at late time, removed by local time averages in Fig. 2.2.

Table 2.1-2.2 shows that the terminal velocity coefficients C ; are nearly independent
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Figure 2.2: Left: The bubble front velocity wvs. time. Right: Convergence of the drag
ratios Dy ; to a large time asymptotic limit. Rapid small oscillations are suppressed by time
averaging of the data. The top line (solid) is Dj and the bottom (dashed) is D%. Here
My =0.05, Pioo /Py =0, Paoo/Py =10, 71 = 4.0 and v, = 1.1.

of EOS and compressibility parameters. See also Tables 5.1-5.4 in the Appendix. From
(2.14), the phenomenological drag coefficient C; @ in the single mode buoyancy drag equation
is related to the terminal velocities and it thus has a similar behavior. However, the solutions
are not actually converging to the incompressible limit even within the fairly small Mach
numbers we achieve with our compressible code. In Fig. 2.1, we observe that the shape of
the bubble fronts at the terminal velocities depends significantly on the EOS parameters
for very weakly compressible flows. Continuing this point of view, we see that pressure
differences between the two phases are likewise sensitive to EOS and compressibility effects.
The same sensitivity of pressure differences on simulation parameters was observed in [53]

in the content of multiphase averaged equations.

Let Ap denote the difference p, — p; in the pressures between the two phases, averaged

over the horizontal space variable x, as a function of z and ¢#. Then Ap < 0 at the bubble
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tip and Ap > 0 at the spike tip. We define Ap, s to be the value of (—1)*Ap at the bubble
or spike tip at the time of terminal velocity. Then Ap, /) is a force, and it can be regarded
as a pressure drag force on the bubble/spike tip. These forces display significant EOS and
compressibility dependence in the moderate to weak compressibility regime. We dimension-
alize this force through division by the form drag force or in view of (2.13) by Ag. Similar
definitions apply to Av and Av,,. Here vy (v2) is the light (heavy) phase velocity averaged
over the = space.

Simple results in Table 2.1-2.2 and details in Tables 5.1-5.4 in the Appendix show a sig-
nificant dependence of the pressure drag force, or the drag ratio on EOS parameters and
compressibility,

Dy, = —— (2.33)

The time dependent drag ratios are evaluated at the time of terminal (bubble or spike)
velocity. The sensitivity of the drag ratios to EOS parameters results directly from the strong
sensitivity of the pressure differences to these parameters. The strongest EOS dependence
occurs in Table 5.4 with Py /Py = 10 > P» /Py = 0 and for 7, = 4.0 > 5 = 1.1, which is
in the four right columns of each table. Generally, the pressure differences and drag ratios
decrease as the penetrating phase becomes stiffer (larger v or Py,) relative to the ambient
phase, and these quantities are much more sensitive to variation of P, than to variation
of 7. We also observe that EOS effects are diminished at high compressibility, so that the
M, = 0.55 column of Table 2.1-2.2 is nearly independent of the EOS, in contrast to the EOS
dependence, especially of pressure differences and drag ratios for the weakly compressible
column M, = 0.05. In the high compressibility limit, the pressure drag is approximately

equal to the form drag.
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EOS \ M, 0.55{0.32| 0.1 | 0.05
M, 1029 |0.17 | 0.05 | 0.03
Cy | 0.31 | 0.30 | 0.25 | 0.25
Cs 1043 10.35|0.37 | 0.36
Dy| 11|12 ] 19 20
Dy 1.2 | 14129 | 3.0
M, 1 0.52 ] 0.30 | 0.10 | 0.05
Cy 1032 10.29 | 0.25 | 0.25
Cs | 0.41 | 0.43 ] 0.39 | 0.40
Dy| 11|11 | 25 | 31
D710 | 10 | 15 | 19

Y1 :20, ")/2:11
Ploo/POZPQOO/POZO

Y1 = ]_.]_,’)/2 =20
Pioo/ Py = Paoo/ Py = 10

Table 2.1: Dependence of Cj, s and drag ratio Dy . on compressible EOS parameters.

EOS \ M, 0.55{0.32| 0.1 | 0.05
M, 10.68|0.39|0.12 | 0.06
Cy 1029 | 0.32 | 0.26 | 0.25
Cs 1036 ] 0.39 | 040 | 0.42
Dy | 1.0 | 1.2 | 25 | 3.1
Dy 12|11 | 10 | 1.0
M, 10.22 ] 0.13 | 0.04 | 0.02
Cy | 0.29 | 0.32 | 0.30 | 0.30
Cs | 0.43 | 0.43 ] 0.40 | 0.39
Dy 12|12 |16 | 14
Dy 11|16 | 31 | 3.6

Y1 = 40, Yo = 1.1
Pioo/Py = 0, Paoo /Py = 10

Y1 = ]_]_, Y2 =4.0
Pio/Py =10, Paoo /Py = 0

Table 2.2: Dependence of Cj s and drag ratio Dj ; on compressible EOS parameters. Here
P, is the pressure at the initial mean interface position. The smallest Mach numbers (the
right most column) are approximately 0.02. (See (2.3)).
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Figure 2.3: 2D single mode RT front plots with different compressibilities (from left to right,
M, =0.32, 0.55, 0.71) at terminal velocity. Here 7; and P, are as in Table 2.3.

2.1.3 Shape Effects on Compressible Mixing Rates

The purpose of this section is to study strong compressibility induced shape effects on
mixing rates. We let compressibility M2 vary from 0.1 to 0.8. Over this range, the terminal
velocity increases by 10%. We study the radius of curvature and bubble width to understand
compressibility induced shape effects. We calculate the radius curvature by fitting a circle to
three interface points located at « = 0.45, 0.5 and 0.55. We see from Table 2.3 a trend for the
radius of curvature to increase as the compressibility increases. The maximum bubble width
follows the same trend. The minimum bubble width (which can be regarded as defining a
maximum spike width) has an opposite trend and is probably not a good predictor of bubble
motion. Shape is an important variable in determining drag and terminal velocity, as we see

from Fig. 2.3 and the analysis here.

2.2 Effects of Density Variation on Mixing Rates

In this section, we study the effect of compressibility induced density stratification
on 3D multimode mixing rates. The chaotic mixing problem differs from the single mode

problem in that considerably longer solution times and penetration distances are needed
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My, | C, | k=1/R at V, =V;>® | bubble width (min) | bubble width (max)
0.32 | 0.32 7.78 0.54 0.56
0.55 ] 0.29 4.32 0.52 0.61
0.71 | 0.25 2.89 0.43 0.66
0.89 | 0.22 2.65 0.38 0.66

Table 2.3: Radius curvature for the parameter values A = 1/3, v = 1.1, v = 4.0,
Piw/Py =10 and Py, /Py = 0. Here k = 1/R is the bubble tip curvature.

to achieve asymptotic self similar scaling. For this reason, density stratification associated
with the weakly compressible regime is generally significant, in contrast to the single mode
case where the flows have nearly constant density contrast. We develop an analytical model
to account for density stratification effects in multimode self similar mixing. From [20],
we know that the compressible multimode simulations remain self similar after removal of
stratification effects, until a reversal of the Atwood number regime occurs. Here we reach
the same conclusion through analytic models. We use the results of §2.1 to postulate that
the multimode drag coefficients are not sensitive to weak or moderate compressibility effects

and we study the influence of compressibility induced density stratification.

For cylindrical front tips, we assume that (—1)*Z;(t) > 0 for ¢ > 0, the initial mean
interface height Z;(0) = 0, and that the mixing zone expands, i.e., (—1)'V; > 0. Then
Eq. (2.11) reduces to the equation

i LiCV?
2

(~1)'Z; = Ag — (-1 52

, (2.34)

where the multimode drag coefficient sz’d is given in (2.12). Let S; = V;*/Z; . Then S; can

be regarded as a function of Z; because Z; = Z;(t) is monotone. We obtain

dsi _ V2, VidVi
dZ; 7} T Z;dZ;'

(2.35)
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Figure 2.4: Left: Comparison of the model time dependent Atwood number A,(t) plotted
vs. time, with direct simulation data. Right: p; at the bubble tip, comparing model and
simulation data. Here M2 = 0.1 (moderately compressible).

From (2.35), substitution of the identity 7 = dV;/dt = V;dV;/dZ; shows

ds; :
iz Si + (2.36)

Substituting (2.36) into (2.11), we obtain

Z1 dSZ . ZLl m,d
1.€.,
(-1 Zigy =249~ (-1) (L,Ci + 1) S; . (2.38)

We propose a physics model for time dependent Atwood number based on isothermal
initial conditions. We assume isentropic flow within the mixing zone. The single phase region
has very little flow so that its isothermal initialization property is retained. The density

stratification thus satisfies (2.8) for the continuing phase flow at the mixing zone edge and
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Figure 2.5: Comparison of the model bubble edge with direct simulation data for the
M2 = 0.1 moderately compressible case. The dashed line represents the simulation data
and the solid is calculated from the model equations (2.34) and (2.39). The drag coefficient
c” o in (2.34) is chosen to allow approximate agreement between these curves.

(2.9) for the vanishing flow at the mixing zone edge. From (2.3), the phase i compressibility
M; is a dimensionless length scale over which gravity causes significant fluid compression for
fluid 7. Motivated by §2.1, we assume that the drag coefficient C/™* = C/*(A) is independent
of M;, and so we are concerned only with density stratification effects i.e., variable Atwood
number effects on the mixing rates. Then p; [T exp (vo M2 Z;/\) — T + 1]1/% will replace
pi and py exp (v M3 Z;/\) will replace py at the front tip Z; in the drag-buoyancy equation.

Thus only the Atwood number

Ar2 /v 27

A(ZZ) = (—1)Z M27 1/ M27
D; {7;0 exp <%" )\i’ z) — T+ 1] + pyr exp (%" )\i’ z)

(2.39)

at the bubble or spike tip in (2.38) changes, where T is defined in (2.10). In Fig 2.4, we

compare this model to numerical data from direct simulation of the multimode mixing [20].
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The solid line in the left frame of Fig 2.4 is the model Atwood number plot based on (2.39)
using direct numerical simulation data Z;. We see that the model is qualitatively correct
but overstates the influence of density stratification. The difference between the model and
the data is caused by two factors. Both heavy and light fluid at the bubble tip in the
model are too light relative to the simulation data. The first, and larger, of these effects
can be understood as follows. As confirmed from analysis of the 3D multimode simulation
data [20], some of the heavy fluid near the bubble tip originated near the Z = 0 value for the
initial bubble position and was transported there by the bubble motion. This heavy fluid
evolves from its Z = 0 density isentropically and is heavier than the model assumption. In
Fig. 2.5, we compare the edge model (2.34) with the direct numerical data [20]. The solid
line represents the solution Z;(t) of (2.34) with the Atwood number (2.39). Here the drag
coefficient in (2.34) is an adjustable parameter, chosen to give the best fit for this comparison.
We are here comparing not only the buoyancy drag equation (2.34) to simulation, but also
the influence of the model (2.39) or a time dependent Atwood number in this comparison.

The exact solution of (2.38) is

Zi . m,d
5 = 5 esxp <_ / M@
0

Y
) ) . (2.40)
7 Yy . m: _ )
o ["ew ( [ Li(s)C/ 41 ds) (12409,
0 Z; o Yy
where SZ-(O) = Si(Z; =0), A(Z;) is given in (2.39) and
Li(Z;) =1~ (-1)'A(Z,) . (2.41)
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From (2.38), we see that for a finite dS;/dZ; at Z; = 0, the initial condition is given as

SO =57, =0) = (=1)——L — = (-1)'4a;Ag , 9.42
( ) = ( )LiCi’”’d+1 (—1)*4o;Ag (2.42)

where A = A(Z; = 0) and L, = L;(Z; = 0). The integrals in (2.40) are not evaluated

explicitly, so we introduce the approximation of (2.39),

1= A%) 3 M3 (T2 — )

A(Z)~ A+ (—1)i( Z; (2.43)
valid for small fyier?,Zi/%-)\, i.e., small Z; and M;. Suppose that

Si(Z) = SO + sV z, (2.44)

for small Z;. We substitute (2.43) and (2.44) into (2.38) and equate terms of the same order
of Z;. Notice that the 0" order terms cancel. Using (2.42), the coefficients of Z; give the

identity

m,d

1) (1 — A2 vy M2 (T —
Observe that the sign of Si(l) depends on the sign of 7, —v; . We note that if A = 1 or T,? = ;
is satisfied, it follows from (2.45) that Si(l) = 0 and thus a higher order approximation is

required for S; = S;(Z;) in (2.44). Assuming that Si(l) # 0, we now solve the equation

V2 oo L o)
=50 +507 (2.46)
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for Z;. The solution of Eq. (2.46) is

(0)
;Si'(l) |:COSh <t\/52-(1)) - 1] if SZ-(I) >0

" (2.47)
S0 5 .
2§(1) |:COS <t =S, > — 1] if S;7 <0
From (2.47), we derive for small ¢y/|S™"|
125 25
Z;i = 42 1+ 15 + O(t45i(1)2) ‘ (2.48)
This holds for small t2|gi(1)| e,
1 — A2) M2TO — o,
29 o Mp|T2 =l i

Vi

In the incompressible limit, M; = 0 and Si(l) = 0, Eq. (2.48) gives the asymptotic solution

Z; = tzSi(O)/4 which recovers the incompressible flow solution (1.1).

In general, when the ambient fluid is relatively stiffer, then compressibility speeds up
the mixing of the penetrating (less stiff) fluid. We classify the relative stiffness of the light
and the heavy fluids into three cases when A # 1 and 7 # ;. Note v, ' < 1 < 7; always
and TP7? = 1 in view of (2.10).

Case 1. Assume

T >y (2.50)

This case occurs when the heavy fluid is stiffer than the light fluid. From (2.45), we see that
Sfl) > 0 and Sél) < 0. Thus, (2.48) implies that compressibility makes the bubble edge of

the mixing zone grow faster while the spike edge is slower.
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Case 2. Assume

V< T <y . (2.51)

The two fluids are of comparable stiffness. For example, the case P, = P»y falls into this
category. In this case, Sfl) < 0 and Sél) < 0, so both the bubble and the spike grow more
slowly when compressibility is included in the buoyancy-drag equation.

Case 3. Assume

TO <yt (2.52)

This case occurs when the light fluid is stiffer than the heavy fluid. We obtain SEI) < 0 and
Sél) > 0 from (2.45). Therefore compressibility makes the spike edge grow faster while the
bubble edge is slower.

The results are valid for small ¢ |SZ-(1)| , i.e., when (2.49) holds. Numerical simulations

of (2.11) (not reported here) show that these early time trends are preserved into later time.

28



Chapter 3

Rayleigh-Taylor Mixing with Physical Surface Tension

In this chapter, we identify physical and numerical scale breaking phenomena as sig-
nificant contributors to turbulent RT mixing rates. We determine the influence of surface
tension for immiscible fluids in the experiments of Read and Youngs [44,52] and Smeeton
and Youngs [48] to have a 30% effect on the mixing rate. We have previously compared
tracked and untracked numerical simulations and determined that numerical mass diffusion
has a 100% or larger effect on the mixing rate, using typical levels of grid spacing [20]. Sim-
ilar conclusions, formulated in terms of a Froude number analysis, are found in [16]. The

influence of initial perturbations on the mixing rate has been argued previously [16].

3.1 Dispersion Relations

In order to compare simulations to experiment, we do not attempt to duplicate exactly
all experimental conditions. Rather we apply a change of scale, and attempt to duplicate
dimensionless parameters which characterize the experiments. The Rayleigh-Taylor exper-
iments are for the most part strongly incompressible, and simulation in this regime is not
practical with a compressible code, so we are content with reduction of the dimensionless
compressibility to sufficiently small values so that the incompressible limit has been attained

numerically. Similarly, we do not attempt to duplicate the very large number of different
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Atwood numbers present in the experiments, as the scaling properties of this variable are well
understood. Physical values of the scale breaking parameters are available from published
sources, especially if we ignore refinements such as temperature dependence for quantities
slowly varying over a presumed range of experimental temperatures. See [46] for a discussion

of transport coefficients in the plasma regime, where compressibility is also important.

We first introduce the dimensionless mass diffusion 7, surface tension &, viscosity f and

thermal conductivity x constants

(3.1)

v=v/\Ag\, =0/ Apg,
VA

f=p/ANAgA,  E=k[cypA/AgA .

Here v, 0, 11, and k are the corresponding dimensional parameters, ¢, is the specific heat and
A is a wavelength characterizing the initial perturbations. The wave length of the initial
disturbance is the least well determined of the quantities which enter into the dimensionless
scale breaking coefficient. The theory of the most rapidly growing wave length asserts that
the observed, or true initial disturbance, in the absence of externally imposed disturbances,
will have this most rapidly growing length. The growth rates are determined by dispersion
relations, which assume a small amplitude initial disturbance. When considering miscible
fluids, we denote the thickness of the diffusion layer as 6, = 2v/vt. The dispersion relation

for incompressible flow including both viscosity and mass diffusion gives the growth rate [46]
n = (Agk/v + 12k "* — (u+v)k? (3.2)

where 1) is the eigenvalue of the equation

d d d
—(p—w> :wk2<p—£—p> , w—0asz— +oo,
dz z
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and

p= 5o+ pa) (14 Aexf(2/51))

is the density profile. The most unstable wavelength can be calculated numerically. When

viscosity alone is dominant, the value of \ is determined analytically [46],

477—,“/2/3
A= Cag .

The dimensionless viscosity parameter j with this theoretical wavelength is a constant,

fi = 1/(4m)3?. The thermal diffusivity 1 can be defined by

For incompressible fluids, the thermal diffusivity can be considered as an identical mass

diffusion with mass diffusion coefficient vy. For immiscible fluids, one has [48]

@) 8.5 x 107% . (3.4)
™

3a 1/2
)\:271' <E> R 6’:0’/)\2Apg:

for all values of g, A, and Ap.

To clarify the multitude of parameters and their dependences, we have generated a
data base of known RT experiments and parameters, an excerpt of which is presented in
Table 3.1. We find many cases where the theory of the most unstable wave length agrees
with observation. For related experiments of the same class, but lacking the observational
data, it seems safe to infer that this theory remains valid. We note that this not only
increases the number of experiments which can be modeled by our simulations, but it also

removes the slightly subjective aspect of visual determination of the initial wave length.

We also find cases where the observed wave length and the most unstable wave length
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do not even nearly coincide. When the observed wave length is different (air-helium [6], hot-
cold water [49]), we conclude that the observed value has been imposed by the experimental
apparatus. The question of initial conditions for the experimental studies has been widely
discussed [16], in the context of arguing that unobserved long wave initial perturbations
affect experimentally observed mixing rates a. In contrast, we are making use of observed

wave lengths somewhat longer or shorter than the most unstable wave length.

For the case modeled in Chapter 4 of the splitter plate air-helium experiments of An-
drews et al., we have as private communication from the author an initial disturbance wave
length of 0.5 cm. For those experiments with a series of published visual images, we can

estimate an initial wave length as the smallest observable length in the series of images.

A number of experiments have used immiscible fluids with surfactants. There are two
issues which require further study in this case: the variable surfactant concentration along the
interface between the fluids, and the Marangoni force resulting from variations in surfactant
concentration. Until these effects have been modeled numerically, we do not attempt to

simulate such experiments.

Plasma accelerated instabilities typically have machined initial perturbations with one
or several wave lengths, and visually, it is clear that the dominant effect derives from the im-
posed wavelengths and not from the most unstable ones. Thus the simulation of instabilities
with initial wave lengths other than the most unstable ones is of direct experimental interest,
and the effect of scale breaking on these experiments has been identified as an important

question [46].

3.2 Methods

We consider seven 3D experiments of Read [44] and six of Smeeton and Youngs [48],

for which there is sufficient data to carry out the analysis, which are immiscible and which
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Table 3.1: Summary of length scales and scale breaking parameters for various RT turbulent
mixing experiments.

Experiment scale breaking A observed A\ theory parameter parameter

physics cm cm observed theory
(dimensionless) (dimensionless)

immiscible  surface 0.5 0.4 5.0 x 10~° 8.5x107°

[44, 48] tension

miscible viscosity 0.38 0.22 4x101? 9.0 x 107*

(48] initial mixing layer

miscible viscosity 5 0.5 8.11 x 107* 2.2 x 1072

[49] diffusion

miscible mass 0.5 8.37 0.3 4.6 x 1073

6] diffusion

do not use surfactants. We infer a value of the initial wave length A from the most unstable
wavelength as determined theoretically from a dispersion relation. This value is compared
to that obtained by counting numbers of bubbles at an early time, related to the known
dimensions of the container. This number is not precisely determined by this method, so
the count was performed independently by three people and the results (not very different)
were averaged. The resulting experimentally and theoretically determined wave lengths are
mostly very similar in those cases where there is sufficient data to carry out the experimental

determination. See Table 3.2 and Fig 3.2.

In §3.1, we introduce the dimensionless surface tension & = 0/A*Apg, giving an initial
o as presented in Table 3.3-3.4. The experiments use a container 15 cm on an edge and
have some 30 bubbles (varying between experiments) on the face of the container at an early
time in the experiment, giving a bubble diameter A =~ 15/30 cm = 0.5 cm. At the end
of the experiment, the number of bubbles has decreased to about 6 across the face of the
container, so that the dimensionless surface tension is 25 times smaller. For the simulation,

we consider initial random modes with wave number 8 — 16, giving rise to about 12 bubbles
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along one edge of the computational domain, and thus representing a 5 x 5 cm? portion of
the container, with & = 11E-3. Other simulations start with & = 10E-3 and 7E-3. They end
with about 3 bubbles on a face, and 6 = 6.7E-4. The simulation corresponds approximately

to the first half of the experiment. The computational grid is 1282 x 512.

Front Tracking is a very convenient framework to add additional surface based physics.
Normal vectors and curvature tensors are included in the code. Surface tension forces a
pressure jump at the interface proportional to the surface curvature. Within the normal
propagation step for the dynamic time step of the front, there is a solution of a Riemann
problem. This Riemann problem is central to Front Tracking, as it connects dynamically
the states on the two sides of the front; it replaces a finite difference operation across the
front. In the Riemann solution the basic equations are equilibration of the normal velocity
and the pressure at the front. In the presence of surface tension, with a specified jump in
the pressures (proportional to the surface curvature at the point), the equation of pressure
equilibration is modified due to the pressure jump. But an equation for the equilibration of
the two mid state pressures is still valid, and is used after modification in the usual manner

in the solution for the mid state pressures and for the Riemann problem.

We compare these simulations to a typical untracked simulation (conducted previously
[20]), see also [16]. Numerical mass diffusion in the untracked simulation reduces the time

dependent Atwood number and the observed value of a, both by a factor of about 2 [20].

3.3 Results

Our principal result is the new value for the mixing rate « for the bubble penetration
into the heavy fluid. We compare these values to experiments and to a theoretical analysis
based on a bubble merger model. In Fig. 4.6, we plot the bubble penetration height h wvs.

Agt?, for ideal and immiscible tracked simulations and ideal fluid untracked numerically
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Figure 3.1: The height of bubble penetration is contrasted for three simulations: Ideal fluids,

o
o~

45

ideal (FronTier)
surface tension (FronTier)
TVD

tracked; real fluids (with surface tension), tracked, and ideal fluids, not tracked.

Experiment Comment, ANh O Ao O,

cm cm
Read-Youngs Immiscible [44] # 29 0.37 8.5E-3 0.45 5.7E-3
Read-Youngs Immiscible [44] # 35 0.39 8.5E-3 0.54 4.6E-3
Smeeton-Youngs Immiscible [48] #104 0.42 8.5E-3 0.41 8.8E-3
Smeeton-Youngs Immiscible [48] #105 0.45 8.5E-3 0.48 7.3E-3
Smeeton-Youngs Immiscible [48] #114 0.43 8.5E-3 0.45 7.8E-3

Table 3.2: Comparison of dimensionless surface tension determined by two different defini-
tions of wavelength, theoretical ()\;,) and observational ().

diffusive simulations. The resulting slopes « are given in Table 3.3-3.4.

The factor of two difference (o = 0.067 vs. 0.035) between experiment and untracked
simulations is fully explained by the influence of phenomena which introduce a length scale,
and thus break the scale invariance of the Euler equations. That is the result of [20]. Scale
breaking causes a lowering of a in simulations. An alternate explanation holds that the
experiments have long wave length initial perturbations, causing them to mix more rapidly
than they would otherwise. The long wave length perturbations, to the degree that they
are present, cause an increase in experimental values of a. These perturbations lower the

simulation « required to agree with a hypothetical experiment lacking such perturbations.
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Experiment Comment Q o
Read-Youngs Immiscible [44] # 29 0.073 8.5E-3
Read-Youngs Immiscible [44] # 33  0.066 8.5E-3
Read-Youngs Immiscible [44] # 35 0.071 8.5E-3
Read-Youngs Immiscible [44] # 39  0.076 8.5E-3
Read-Youngs Immiscible [44] # 58 0.077 8.5E-3
Read-Youngs Immiscible [44] # 60 0.073 8.5E-3
Read-Youngs Immiscible [44] # 62  0.063 8.5E-3
Smeeton-Youngs Immiscible [48] # 93  0.050 8.5E-3
Smeeton-Youngs Immiscible [48] # 97  0.060 8.5E-3
Smeeton-Youngs Immiscible [48] #101  0.063 8.5E-3
Smeeton-Youngs Immiscible [48] #104 0.066 8.5E-3
Smeeton-Youngs Immiscible [48] #105 0.072 8.5E-3
Smeeton-Youngs Immiscible [48] #114 0.060 8.5E-3
Average + 2 STD 0.067 + 0.015

Table 3.3: Mixing rates from experiments.

Simulation

FronTier Immiscible 0.062-0.055 11E-3
FronTier Immiscible 0.064-0.058 10E-3
FronTier Immiscible 0.068-0.061 7E-3
TVD Ideal Untracked [20] 0.035-0.034 0.0
FronTier Ideal Tracked 0.09-0.078 0.0

Table 3.4: Mixing rates compared: FronTier simulation compared to experiment and con-
trasted to untracked (TVD) and ideal fluid FronTier simulations. The two values for simu-
lated « are the average slope and the final slope, ¢ is determined by the theoretical wave-
length \y.
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Figure 3.2: The plot of mixing rates a; vs. the dimensionless surface tension &;,. The line
represents the least squares fit to the FT simulation data. The TVD simulation disagrees
with experiment by a factor of 2, a result typical of most untracked simulations.

Both explanations must surely have a level of validity, but the relative importance of the two
has been up to now an unresolved question. With the present agreement with experiment
after correction of scale dependent issues in the simulation, our results suggest that the
factor of two discrepancy is resolved and that there is little room for further change from
long wave perturbations beyond the scatter present in the experimental data. At least, these
perturbations, to the degree that they are present in the experiments and affect mixing rates

significantly, require some additional and presently unknown compensating correction.

These two explanations, the scale effects vs. the long wave length perturbations in
the initial conditions, lead to different physical mechanisms regarding the primary physi-
cal processes governing observed turbulent mixing rates. With scale effects corrected, the
primary physical mechanism is bubble merger. With the continued increase in bubble size,
the natural velocity of the rising bubbles increases. This leads to constant acceleration, and
after correction for the extra velocity associated with the fluctuating bubble height, to a
bubble merger model [11], and the prediction of o = 0.06. The initial perturbation concept
leads to the differential growth dynamics of initially imprinted perturbations as the primary

mechanism for mixing rate acceleration.
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Data/Comment ap, Qy Q.
Smeeton & Youngs [48] 0.067  0.01 0.028
Cheng et al. [11]

Average #104, 105, 114

Formula (3.5) [11] 0.0695

RNG Fixed Point [11] 0.06 0.01
FronTier immiscible 0.062 0.01 0.034
Formula (3.5) 0.073

Table 3.5: Comparison of bubble radius and of height fluctuations between experimental
data, theory and simulation.

The bubble merger model, moreover, predicts a relation among three different measures
of the mixing rate (three different «’s). Thus we test this concept and the viability of bubble
merger as a primary mechanism in mixing layer acceleration. The three a’s are all coefficients
of Agt?. a = ay, as in (1.1), refers to the bubble penetration height. a, refers to the bubble
radius, and «y, refers to the fluctuations in the bubble height. These three measures of the
mixing zone growth rate are related by the formula

L 1 1
_ = 4 3.5
ap = genan’” + | o+ 5 | A, (3:5)
where ¢, = 0.47 is a Froude number associated with the terminal velocity of a single bubble

and k =~ 0.51 is a geometrical factor associated with the increase in bubble size due to bubble

merger. See [11] for details.

To further test our simulations, we compare the three ’s determined from our simula-
tions to those measured from [48], as analyzed in [11] and to the relation (3.5), see Table 3.5.
One might wonder why the bubble merger model agrees with the immiscible experi-
mental value o = 0.067 4 0.015 rather than the ideal value o = 0.09 reported here. In fact,
the envelope velocity used in [11] is a phenomenological model tested against experimental

data for immiscible fluids, see [30].
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In order to carry out the simulation data analysis reported in Table 3.5, we first record
local maxima of the interface between the two fluids, in a height range near the height of the
leading bubble. The locations of these maxima are the bubble peaks of the simulation. We
introduce Voronoi cells about these peaks to define the bubbles themselves (and including
the associated spikes), as a decomposition of z,y space. To select local maxima we want
to avoid spurious maxima and identify distinct bubbles. For this purpose, we start with
an arbitrary local maxima of the light fluid location, within the upper bubble strip defined
by the volume fraction Bigne < 0.25. This local maxima is accepted if it is unique within
a 5 x 5 stencil of horizontal mesh blocks. In the case of competing maxima within this
critical distance, the higher one is selected. This method of selecting local maxima and their
heights also determines the height fluctuations of the bubbles. The value thus obtained was
compared with that estimated by a manual inspection of the data, and the two were found
to agree. For each bubble thus defined, we determine the curve defined by the intersection
of the tracked surface with the hyperplane z = const., and an equivalent radius of a circle
having equal area. From this data we find the average bubble radius at a given time. We
also considered the radius of the largest circle contained within the cell. See Fig. 3.3 as
an illustration of this construction. This definition gives too large a radius for the bubbles
as it includes too much of the spike region between the bubbles. Compare to Fig. 3.4 for
the location of the light fluid through a fixed slice. We average the minimum and maximum
radius for each bubble in this slice and average this over the bubbles to determine the average

bubble radius, see Fig. 3.5 and Table 3.5, which also show height fluctuations.
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Figure 3.3: Voronoi cell construction about the local bubble maxima to determine equivalent
bubble radii based on a slice through the simulation at constant z given by the volume
fraction 5light =0.2.

Figure 3.4: Horizontal cross section, showing the bubbles at a height given by the volume
fraction Bjgny = 0.2, for the same time step as in Fig. 3.3.
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Figure 3.5: Growth of mean bubble width (r,) and bubble height fluctuations (hy).
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Chapter 4

Rayleigh-Taylor Mixing with Physical Mass Diffusion

The conservation laws

dp

E%—V-pv:A-up,

%nLV-pvv:—VP—l—pgjLV-l/VVp, (4.1)
d(pE

%‘FV'((,OE—FP)V):pV'g—FV'VEV,O,

model the mixing of compressible miscible fluids with physical mass diffusion, where p is
density, v is velocity, P is pressure, ¢ is gravity, E is total specific energy, and v is the
coefficient of mass diffusion.

The difficulty in solving this system is to eliminate numerical diffusion across an in-
terface between distinct fluids while allowing the correct amount of physical mass diffusion,
in the limit where v is small relative to the affordable grid resolution. The front tracking
method [7,12,17,34, 36, 41] totally eliminates numerical diffusion, but until now it has not
allowed the inclusion of small amounts of physical mass diffusion. In this section, we in-
troduce a new algorithm, building on the front tracking method, to add small amounts of
physical mass diffusion while preserving the elimination of numerical mass diffusion across
an interface. The improved algorithm is based on the analytical solution of the diffusion

equation in one dimension.
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Our primary results are to introduce the new, limited diffusion tracking algorithm, to
test this algorithm in 1D examples, and to discuss its extension to 3D. Sample 3D simulation
results with experimental validation will be summarized also. In §4.1 the new algorithm to
solve the continuity equation with physical diffusion in one dimension is introduced, making
use of the front tracking approach. In §4.2 we present computational verification evidence
for the proposed algorithm. In §4.3, we extend the algorithm to higher dimensions. We
validate the 3D algorithm by comparing 3D simulations of the Rayleigh-Taylor instability to

experimental results.

4.1 Physical Mass Diffusion in One Dimension

The new algorithm, developed first in 1D, is based on the following ideas. Untracked
contact discontinuities give rise to a blurred or smeared out front. We preserve the tracking
of a sharp front and introduce physical mass diffusion through it as a perturbation. Thus
the time step is split into two parts, the first being the usual non diffusive front tracking
[18,26], and the second a purely physical mass diffusion step. Since the first step has been
described previously, we only describe the second, physical mass diffusion, step. Conceptu-
ally, the front states stored on the tracked front represent the states at +oo relative to the
scale of the diffusion layer. For the mass diffusion step at each time step, we compare two
algorithms. The first is a subgrid algorithm which allows limited mass diffusion according to
the analytic form of the solution for the diffusion equation. The second is a finite difference
(FD) algorithm. It is conceptually simpler, and computes the desired diffusion across the
front based on the interior (nonfront) states, with no regard for any tracked front which
might occur within the difference stencil. After the diffusion layer has reached a width of
2Ax, the first algorithm is turned off and replaced with the second. In referring to the finite

difference algorithm, we understand the case in which it is used for all times, not just after
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the diffusion layer width is comparable to the mesh spacing. Both algorithms appear to give
satisfactory results, but the subgrid algorithm is superior in computing the amount of mass
diffused through the interface. These two algorithms are compared to a finite difference

algorithm without tracking.

The subgrid algorithm starts with a reconstruction of the diffusion transition layer.

Consider the convection equation with physical diffusion

Pt + UPy = Vg (4.2)

and the initial condition

Po T < Tp
p(z,0) =
Poo T > Xp

where v is the physical diffusion coefficient. This initial value problem can be solved exactly

Poo — P (z—X)/VAanvt s
p(z,t) = p_oo + % . e~td¢ (4.3)

where X = xy + ut.

When Eq. (4.2) is solved numerically, the finite difference (or finite volume) equation

is equivalent to the following modified equation

where » is the numerical diffusion. As a result, the numerical solution is approximately

oo — Poo (z—X)/\/4An(v+D)t )
P(,t) = poe + v e S dE. (4.5)

The diffusion widths for the exact solution and numerical solution are d = m/vt and d =
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7/ (v + D)t respectively. Since 7 — 0 as Az — 0, d — d under the mesh refinement.

However, for a large scale computation in three dimensions, mesh refinement is expen-
sive and requires large increases of memory and CPU time. For example, each doubling of
the number of grid points in each dimension requires an 8 times increase of memory and a 16
times increase of CPU time. We wish to use finite and affordable computational mesh to sim-
ulate realistic physical mass diffusion when the physical diffusion coefficient is substantially

smaller than the numerical diffusion coefficient.

Assume that we know the density transition, p} , at the current step, the location of
the density transition (midpoint), X", at the current step, and the amount of mass which has
diffused through the interface in either direction up to the current step, M’.. The density
transition and its location are stored as front states and front positions, and updated as
part of the (non-diffusive) front and interior state update. The diffused mass, M, is a new
variable. It is a diffusion progress variable, and it is updated incrementally within the mass
diffusion step. On this basis, we define an analytic solution

Do — Pooo (z—X")/VAmvin )

The solution of (4.6) depends on a time t", defined by the property that the integral of

P — pP_oo from —oo to X™ is just M".

Thus we define the current (pseudo) time ¢™ in terms of M’ and the current density

states at infinity, through the formula

00 00 2
M:L_ = /0 (p(]},tn) - pr-ll—oo)dl‘ = (pr—ll—oo - pT_Loo)/O (1 - = 6_6 df) dx )

70

0 n 0 2T
_ o 2
M :/ (p(z, ") — p" . )dz = %/ e dedn

o0 J —00
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Notice M” = — M. The diffused mass at step n is defined as
AME = M — MT (4.8)

where M’ is defined as in (4.7), but with the pseudo time ¢" replaced by t" + At.

As a convention [13], the diffusion layer is reconstructed as a simple piecewise linear
curve, defined by a line segment tangent to p(x,t") through the transition mid point X" and
cutting the horizontal lines p = pi,. The edges of the reconstructed transition layer are

located at X" 4+ d", where

[Poo — P—oo] -1 TV AL
& = d(t") = Y Sy L N § Wi
) = ey ey~ VY MCE

and the max is computed within the transition zone.

" is defined incrementally from its previous value by adding the amount of mass to
diffuse in the current step. This amount is defined by the analytic solution of (4.6), using the
equivalent time t" defined in terms of M’ and the current time step size At. The diffused
mass is added to the interior state on one side of the front and subtracted from the interior

state on the other.

The subgrid algorithm is applied as long as d” < Ax. When d" > Ax or if the finite
difference algorithm rather than the subgrid algorithm is being used, then the diffusion step
is a pure centered second order finite difference step, applied to the interior states, with no
regard for the front locations, and no use of ghost cells near the front. In either case, the
diffusion step defines an amount of mass to be added to or subtracted from that located in

the interior states at locations adjacent to the front.

Assume that the velocity and total energy are slowly varying through the transition

layer, in comparison to the density variation. On this basis, we also treat the diffusion

46



terms added to the momentum and energy equations as a diffusional correction, and define

a parabolic update step for these equations.

To update the interior states, we use operator splitting to separate the hyperbolic from
the parabolic terms. A regular stencil is one which does not meet the front. The diffusion
term is solved by conventional centered finite differences. For an irregular stencil, if the front
cuts a mesh cell not at the center of the stencil, we define ghost cell extrapolation of the
states on the same side of the front as the center cell using the front states as in [31]. In
case the front cuts the central cell of the stencil, i.e., the cell that the stencil is updating, we

—~ntl ——n+l
P - the states at

use the new algorithm explained below. We denote by o', (pv);, , (pE);
x} after the hyperbolic update. Let AM’} be defined as above. This mass must be added
to the mass described by the interior states. We distribute this increment of diffused mass
to the two closest grid cells which lie on each side of the center of the layer. In order to do
this, we detect the closest grid center points on either side of the front center point X"*1,

namely z; and z;,,. We add to these cells the mass diffused from the other side

AM™
n+l _ ~ntl -
pz - pz + A.’I,' )
bl GPAM™
()i = (o), + 25—,
—~—ntl  EPAMP
(pE);* = (pE); +——F—,
o 2T (4.9)
n+l _ ~n+l AM-l-
Pit1 = Piy1 T Ar
n Tl @n IAMH
(Pv)z:ll = (PU)Z'H + +T$+ )
it _ o B AMY
(PE)z:f = (pE); 4 + % .

4.2 Validation

First we compare algorithms for a 1D pure diffusion and transport problem in Fig. 4.1.

We set a constant velocity field v = 0.5, and study the mass diffusion across a density jump.
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Figure 4.1: Comparison of algorithms for the 1D diffusion and transport problem. Plot of
density vs time, displayed after 2000 coarse grid time steps and an equivalent physical time
for the fine grid.

We compare the exact solution (obtained from a fine grid untracked numerical method) to
the subgrid algorithm, the tracked finite difference (FD) algorithm and an untracked finite
difference (FD) algorithm. The later three algorithms are computed on a coarse grid, with
the final time and the physical values of mass diffusion equivalent to that used in the 3D
RT simulation for all figures of Sect. 4.2. We choose v = 0.0008 in all simulations shown
in Sect. 4.2. On the scale of three or so mesh blocks, we see that the untracked algorithm
is wrong, the tracked FD algorithm is good and the subgrid algorithm is excellent. The
excessive mass diffusion in the untracked solution results from the transport within the
Euler equation step and not from the computation of diffusion per se.

Fig. 4.2 compares density contours with different algorithms for the pure transport and
diffusion problem, from which we can see that the subgrid (tracked) algorithm is less diffused
than the untracked algorithm.

Table 4.1 compares the L; errors for different algorithms for the diffusion and transport

problem. We denote by pexact (, &™) the exact solution, which can be obtained by a numerical
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Figure 4.2: Comparison of coarse mesh space time density contours for different algorithms.
Two contours are shown, for p = 1.5 and p = 2.5, that is 25% and 75% of the density change
through the transition layer. To avoid stairstep plots of coarse grid piecewise constant
functions, we use reconstruction of the transition layer as defined in Sec. 4.1. For the
untracked FD algorithm, we interpolate data between adjacent grid points. Left: subgrid
(tracked) algorithm. The diffusion layer has a width of about 2d" = 0.8Ax at time t = 16.
Right: FD (untracked) algorithm. The numerically computed diffusion layer has a width of
about 3Az at time ¢ = 16.
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Mesh  Subgrid (Tracked) FD (Tracked) FD (Untracked)
40 0.30 0.29 1.02
80 0.28 0.26 0.57
160 0.21 0.20 0.25

Table 4.1: L, error comparison for different algorithms.

Mesh  Subgrid (Tracked) FD (Tracked) FD (Untracked)
40 0.240 0.071 1.274
80 0.242 0.129 0.735
160 0.252 0.218 0.480
4000 0.264 0.264 0.264

Table 4.2: Comparison of diffused mass for different algorithms at the same time with
different grid sizes. The coarsest mesh corresponds to the late time 3D simulation.

solution using a very fine grid and by p(z,¢") the numerical solution computed on a coarse
grid, and interpreted as piecewise linear between grid points. For the two tracked algorithms,
the grid cell which contains the front is divided into two fractional cells on either side of the
front, and the front states provide the additional data to reconstruct a linear solution in each

subcell. We calculate the Ly error at time " by [*[p(,t")exact — p(, t")|d.

Table 4.2 compares the mass diffused through the diffusion layer midpoint X" at time
t". For untracked simulations, X" is defined as the midpoint location of the density within
the transition layer. This location is, in general, not a grid point, and so the diffused mass
calculation involves use of a fractional cell. The diffused mass is computed by 2 f:YOZ |p(x, t™)—
P-oo|dz. From this comparison, we see that the subgrid algorithm is far more accurate in
this measure of convergence than the FD (tracked and especially untracked) algorithms for

a coarse grid. All algorithms agree with a fine grid.

Fig 4.3 shows the convergence of the subgrid and the tracked FD algorithms. Both

algorithms have good L; error norms, even for the coarse grid, with a slight advantage for
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Figure 4.3: Convergence of the tracked subgrid and the tracked FD algorithms for the same
1D diffusion and transport problem. Left: the tracked subgrid algorithm; right: the tracked
FD algorithm. The coarsest grid coincides with that of Fig. 4.1.

the F'D algorithm.

Fig. 4.4 compares the algorithms for a shock-contact interaction, again with an imposed
velocity field. The left frame is before and the right frame after the interaction of the shock
with the contact. The same three algorithms are compared to a fine grid solution. Fig. 4.5
compares the numerical algorithms before (left) and after (right) a rarefaction wave interacts
with the contact interface, parameters chosen as above. From these three plots, we conclude
that the tracked subgrid algorithm and the tracked FD algorithm are nearly equivalent, and

both are much better than the completely untracked solution.

4.3 Simulation Results for Miscible Fluids

For the higher dimension case, we split the front into normal and tangential directions.
The subgrid algorithm is applied along the normal direction, and no diffusion is added to

the tangential sweep. In this way, the subgrid algorithm in one dimension can be extended
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Figure 4.4: 1D comparison of algorithms for a shock contact interaction problem. Left: before
the shock interacts with the contact; right: after the shock passes through the contact.
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Figure 4.5: 1D comparison of algorithms for a rarefaction contact interaction problem. Left:
before the rarefaction interacts with the contact; right: after the rarefaction passes through
the contact.
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easily and efficiently to the higher dimension. We do not present results from a 3D extension
of the tracked FD algorithm, but we remark that it also must be solved in normal-tangential
coordinates to avoid over-diffusing the mass. The subgrid algorithm is validated by com-
paring a 3D simulation of the Rayleigh-Taylor (RT) instability to laboratory experiments
[6].

We model miscible fluids using physical values for the interfluid mass diffusion. Experi-
ments [6] studied the mixing of air and helium, with a Fickian diffusion constant v = 0.00066
cm?/ms [14]. The dimensionless diffusion constant is introduced in §3.1, 7 = v/A\/Ag\ =
0.3, with ¢ = earth’s gravity, A = 0.035 the Atwood number, and A = 0.5 the initial bubble
diameter. We model this experiment with an initial 7 = 0.3 and we use the Atwood number
A=0.5.

Our main results, summarized in Table 4.3, are the values for the mixing rate a for
the bubble penetration into the heavy fluid, in agreement with experimental data. One
simulation presented here is highly compressible (M? = 0.25). All the others are nearly
incompressible (M? = 0.0076). Here M? = \g/c? is a dimensionless measure of compress-
ibility, where ¢, denotes the sound speed of the heavy fluid. On the basis of the results
of Table 4.3, we identify scale dependent phenomena, i.e. transport, surface tension and
compressibility, as significant contributors to the mixing rate.

We remove the effects of compressible density stratification and of various levels of
numerical and/or physical mass diffusion, and explain the various bubble penetration curves
in terms of a universal theory, through the use of time dependent Atwood numbers [20].
The raw or unadjusted mixing rate is the slope of the curve h vs. Agt®. Following [20], we
introduce a time dependent Atwood number A(t) defined by the solution itself. Using this, we
can define the variable density corrected mixing rate as the slope of h vs. 2 f(f fos A(r)gdrds.

The raw and density renormalized mixing rates are plotted in Fig. 4.6 (left and right).

Observe that the rescaled plots on the right, for two tracked simulations (ideal and physical
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Table 4.3: Mixing rates compared: FronTier simulation compared to experiment; ideal fluid
FronTier compared to ideal untracked TVD. The final column (computed for simulations
only) is the percentage change from the FronTier simulation of the ideal case.

Experiment Comment Coeff. « Percentage
Simulation change
Banerjee-Andrews Mass diffusion [6] v=03 0.07
FronTier Miscible v=0.3 0.069 -23%
TVD Untracked [20], Ideal 0.0 0.035 -61%
FronTier Ideal 0.0 0.09 0%
TVD Untracked, ideal (renormalized) 0.0 0.076 -16%
FronTier Miscible, ideal (renormalized) 0.0 0.089 -1%
FronTier High compressibility (renormalized)
ideal, M? = 0.25 0.0 011  +22%
ideal, M? = 0.5 [20] 0.0 0.21  +133%
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Figure 4.6: Left: Self similar growth of the mixing zone. Right: The same data plotted
using a time dependent Atwood number, to remove the effects of numerical or physical mass
diffusion and of compressible (M? = 0.25) density stratification. See also Table 4.3 where
results from several different compressibilities are given.

o4



0_15:_ 7 ——e—— high compressibility
?I:" ————— ideal FronTier
0'1;" — meassdiffusion
0.05- ———————— ideal TVD
00 ‘ 0?5 I 1!5 ‘ é

Figure 4.7: Plot of the time dependent Atwood number for tracked simulations with and
without physical mass diffusion and for an untracked simulation (with numerical mass dif-
fusion).

mass diffusion), are in close agreement, indicating that the differences in the time dependent
Atwood number account for the different penetration rates of these cases. The discrepancy
between scaled tracked and untracked renormalized plots appears to be due to grid related
interface smoothing, an effect we call numerical surface tension. The discrepancy between

scaled tracked high and low compressibility is due to compressibility effects.

The h vs. Agt? and especially the renormalized h vs. fot [, A(r)gdrds plots in Fig. 4.6
have straight line shapes after an initial transient, and we here report the slope obtained by
joining the initial to the final point. We separate variable density effects from the numerical

and physical surface smoothing and surface tension effects and obtain the results of Table 4.3.

In Fig. 4.7, we plot the time dependent Atwood numbers [20] for the curves of Fig. 4.6.
The deviation of the low compressibility A(¢) from A = A(¢t = 0) is due mainly to numerical

or physical mass diffusion.
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4.3.1 The Bubble Merger Process

The acceleration of the bubble envelope in multimode Rayleigh-Taylor (RT) instability
is postulated to depend on the process of bubble competition and merger [5,11, 35, 39,47, 54].

Key phenomena characterize this process:

1. Proximity of bubbles to each other. Bubble competition and the merger which drives
the acceleration of the bubble envelope can only occur if bubbles are sufficiently close

to each other.

2. Speed of taller vs. shorter bubbles. Taller bubbles should on the average advance faster
than neighboring shorter bubbles. These faster moving bubbles then expand to take
up the space left by the slower, lower bubbles which, in terms of relative velocities, get
swept downstream of the main bubble envelope flow. Thus there is an inverse cascade
with fewer and larger structures dominating the flow as time progresses. This process

is called bubble competition and merger.

3. Speed of taller bubbles vs. single mode theory. The vertical velocity of the taller
multimode RT bubbles should be considerably greater than the terminal velocity of a
single bubble of an equivalent radius in single mode RT instability. The increment in
velocity, called the bubble envelope velocity [30], is about equal to single mode bubble

velocity [30].

We demonstrate quantitatively (with the low compressibility simulation of Sec. 4.3)
that tracked mass diffusive simulations exhibit these three characteristics. Our diagnostics
therefore support the view that bubble competition and merger occurs in RT simulations,

driving the acceleration of the bubble envelope.
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4.3.2 Multimode vs. Single Mode

Since Eq. (1.1) is used to describe the bubble penetration in multimode RT instability,
it is important that the simulations remain in the multimode regime up to the latest times
that Eq. (1.1) is used to model the bubble envelope growth. The dynamics of single mode
RT instability are very different from the multimode case. Single mode RT instability is
characterized by a brief initial period of exponential growth followed by linear acceleration
and then transition to an approximately constant terminal velocity, v, of the bubble [29, 39,
47, 52]; multimode RT is characterized by nonlinear coupling of modes which drives continual

acceleration of the bubble envelope.

To analyze the bubble dynamics, we first identify the z,y (horizontal) plane location
of the bubble peaks, then determine the average of the number of bubbles near each bubble.
We use an algorithm described in [22] to determine distinct bubble peaks above the 20%
light fluid volume fraction height. To ensure the accuracy of these bubble peak locations, we
compare the results of the algorithm with horizontal slices through the bubble portion of the
mixing zone at and above the 20% light fluid volume fraction height. This combined approach
gives accurate bubble tip locations up to time 18 (the simulation runs up to time 21), but
the extremely complicated nature of the late time interface makes the task of identifying
individual bubbles highly subjective, and none of the analysis described in this section is

performed on simulation times later than ¢ = 18.

The radius of influence (or radius) of a bubble is defined by first considering a Voronoi
cell decomposition of the horizontal plane containing the x — y location of the bubble peaks.
The radius of the largest circle centered at a bubble location and enclosed in its Voronoi cell
defines the radius of that bubble. Fig. 4.8 (a) illustrates this construction for ¢ = 15. See

also [22].
We use a one bubble radius separation to determine the number of bubbles near a given
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Figure 4.8: Horizontal plane view of bubble tip locations at time ¢ = 15. (a) Voronoi diagram
of the bubble tip locations in the horizontal plane, and the accompanying maximum radius
circles enclosed in a Voronoi cell and centered at a bubble tip. These circles represent the
bubbles. (b) Definition of the 1-radius neighborhood of a bubble; the inner circle (solid
line) is the bubble as defined in (a) while the outer circle (dotted line) defines a 1-radius
neighborhood around that bubble. The three dashed line circles represent bubbles within
the 1-radius neighborhood of the solid line bubble, and thus presumed to interact with it.
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Figure 4.9: Mean number of bubbles within a 1-radius neighborhood of a given bubble.

bubble. See Fig. 4.8 (b). In Fig. 4.9, we plot the average number of other bubbles within a
1-radius neighborhood of each bubble. The average is about 3, showing that the multimodal
regime is still present at late time. Bubbles are still sufficiently close to each other at late time
to affect the growth pattern of other bubbles significantly; bubble competition and merger is
still viable. This analysis quantitatively confirms the qualitative impression obtained from

late time front plots of tracked RT multimode simulations. (See, for example, [23] or [21].)

4.3.3 Vertical Velocities of Neighboring Bubbles and the Inverse
Cascade
Using the 1-radius neighborhoods defined in Sec. 4.3.2 for each bubble, we study the

relationship between the vertical velocities of neighboring bubbles. The bubble competi-

tion and merger concept requires that, in general, taller bubbles advance faster than their
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Figure 4.10: Percentage measure of the number of times the tallest bubble in a neighborhood
is also the fastest advancing bubble in that neighborhood.

shorter neighbors. We illustrate that this in fact happens in our front tracking mass-diffusion

simulation using two metrics.

First, in Fig. 4.10, we show as a function of time the percentage of occurrences of the
tallest bubble in a neighborhood also having the largest vertical speed. This percentage
(about 60% on a time-averaged basis) can be compared with the value 25% which would

result if there were no correlation between bubble height and velocity.

However, even if the tallest bubble in a neighborhood is not the fastest advancing
bubble, it is typically almost the fastest bubble. A second metric also illustrates that taller
bubbles move faster than shorter ones. For each 1-radius neighborhood we determine the
percentage of bubbles which are slower than the tallest bubble in that neighborhood. The

weighted mean of those percentages (with the proportion of the total number of neighborhood
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Figure 4.11: The percentage of bubbles in a neighborhood which are slower than the tallest
bubble in that neighborhood.

bubbles in each neighborhood serving as the weights) is then computed at fixed time for all
1-radius neighborhoods of bubbles. The results are summarized in Fig. 4.11. The tallest
bubble typically moves faster than 80% of its neighbors. In the absence of a speed-height
correlation, this value would be 50%. We therefore have quantitative confirmation that taller
bubbles generally advance faster than do shorter ones in our simulation, as is characteristic

of the process of bubble competition and merger.

Finally, we provide evidence that the disparity in bubble speeds results in an inverse
cascade of increasing bubble sizes and decreasing number of structures having a larger size
in the bubble envelope. In Fig. 4.12, the plots show, as a function of simulation time, a
decreasing trend in the number of bubbles (frame (a)) and an increasing trend in the mean

radius, 7, of the bubbles (frame (b)). Reference [11] defines an o, = r/Agt? for which there is
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Figure 4.12: (a) The number of bubble peaks above the 20% volume fraction contour as a
function of time. (b) The mean bubble radius, 7, as a function of scaled distance.

no known published miscible experimental value but for which the immiscible experimental
value is approximately 0.01. The immiscible simulation [22] reports a,, = 0.01 also. That
value is twice as large as «, = 0.005 obtained from the miscible front tracking simulation,
indicating a possible difference in the bubble dynamics between miscible and immiscible RT

mixing.

4.3.4 Multimode Velocities vs. Single Mode Terminal Velocities

We compare the vertical speeds of the taller multimode RT simulation bubbles to the
terminal speeds of single mode bubbles of equivalent radii. By ¢ = 2, the simulation bubbles
have achieved a height much greater than half their mean radius. From the rough guideline
established in [52], this means that as single mode perturbations they should be entering the
terminal velocity regime. However, on average, the speed of the tallest 25% of the multimode
simulation bubbles is 2.4 times the corresponding single mode terminal velocity. This is con-

sistent with the two-dimensional simulation study [30], which found increases in multimode
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Figure 4.13: A comparison of the front tracking simulation vertical speed, v, of the tallest
25% of bubbles with the Taylor-formula terminal vertical speed, vy, of those same bubbles
when regarded as single isolated bubbles.

bubble velocities by a factor of 2 over equivalent single mode bubble terminal velocities. This
is further evidence that the bubble dynamics are dominated by the interaction of neighboring
bubbles. These results are summarized in Fig. 4.13. The formula used for computing v
[50] is

Voo = o/ Agr = 0.48(\/ Agr), (4.10)

where r is the bubble radius.
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Chapter 5

Conclusions

We find insensitivity of Froude numbers and drag coefficients to compressibility and
EOS parameters, but in contrast a strong dependence of shape and pressure differences on
these same qualities. For multimode mixing, the dominant compressibility effect is due to

compressibility induced density stratification of the fluids.

We have reported on a new set of 3D Rayleigh-Taylor chaotic mixing simulations, based
on a new tracking algorithm in the Front Tracking code FronTier. We include a discussion
of other scale breaking physical effects: mass diffusion, surface tension, compressibility, and
numerical scale breaking effects: numerical mass diffusion and effective numerical surface
tension in the analysis. The scale breaking terms cause a change in the mixing rate «
ranging from over +100% to —61% in comparison to an ideal simulation, lacking scale
breaking effects. They agree with experimental values for both miscible and immiscible fluids.
Accurate numerical tracking to control numerical mass diffusion and accurate modeling of
physical scale breaking phenomena (surface tension or mass diffusion) were the critical steps

for this level of agreement.

A broader conclusion of this thesis is to document the sensitivity of Rayleigh-Taylor
mixing rates to physical and numerical scale breaking phenomena and to scale breaking

diffusive or interface smoothing artifacts of the numerical algorithms used in simulations.
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Since Rayleigh-Taylor phenomena occurs on a variety of scales, from laser fusion to turbu-
lent combustion in a supernova, modeling of scale breaking phenomena in the physics and
eliminating it from the numerics becomes an issue.

Remaining issues concern the data of Dimonte and Schneider [15], for which the role of
surfactants requires additional physical modeling and some miscible experiments for which
viscosity, not mass diffusion, is the dominant scale breaking physics. Additionally, the influ-
ence of mesh refinement should be explored when computer resources permit, but we observe
that the mesh resolution per bubble used in the present study is already 2 times finer than

that of the benchmark study [16].
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Appendix: EOS Dependence of the Froude number

and Drag Ratio in the Weakly Compressible Limit

In Tables 5.1-5.4 we show that dependence of Cj s and the drag ratio Dy ; on the EOS.

Here M, = 0.1 and P, is the pressure at the initial mean interface position.
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Mla Cba CS: Dga Dg
Y2\ 11 2.0 4.0
1.1 007, 0.25, 0.39, 2.0, 2.0 | 0.05, 0.25, 0.37, 1.9, 2.9 | 0.04, 0.27, 0.35, 1.0, 4.0
2.0 | 0.10, 0.26, 0.40, 2.5, 1.5 | 0.07, 0.25, 0.39, 2.0, 2.0 | 0.05, 0.25, 0.37, 1.6, 3.0
4.0 |0.13, 0.26, 0.42, 2.5, 1.0 | 0.10, 0.25, 0.40, 2.5, 1.5 | 0.07, 0.25, 0.39, 2.0, 2.0

Table 5.1: Ploo/P[):PQoo/PO =0.

Mla Cba CS: Dga DZ
Y2\ 1.1 2.0 4.0
1.1 007, 0.25, 0.39, 2.0, 2.0 | 0.05, 0.25, 0.38, 1.8, 2.7 | 0.04, 0.26, 0.35, 1.0, 3.7
2.0 |0.10, 0.25, 0.39, 2.5, 1.5 | 0.07, 0.25, 0.39, 2.0, 2.0 | 0.05, 0.25, 0.37, 1.6, 3.0
40 |0.13, 0.26, 0.41, 2.5, 1.0 | 0.10, 0.26, 0.40, 2.5, 1.5 | 0.07, 0.25, 0.38, 2.1, 2.1

Table 5.2: PIOO/PO :PQOO/PO = 10.

Ml; Cb; Csa Dga DZ
Y2\ 1.1 2.0 4.0
1.1 [0.23, 0.26, 0.43, 2.5, 0.6 | 0.17, 0.26, 0.42, 2.5, 0.9 | 0.12, 0.26, 0.40, 2.5, 1.0
2.0 |0.32, 0.26, 0.44, 2.5, 0.5 | 0.23, 0.26, 0.42, 2.5, 0.5 | 0.17, 0.26, 0.41, 2.5, 0.9
4.0 |0.45, 0.26, 0.44, 2.5, 0.4 | 0.33, 0.26, 0.44, 2.5, 0.5 | 0.23, 0.27, 0.44, 2.5, 0.6

Table 5.3: Ploo/PO =0 and PQOO/PO =10

Mla Cba Csa Dg: D;
Y2\ 11 2.0 4.0
1.1 [0.02, 0.36, 0.39, 0.7, 5.2 | 0.016, 0.40, 0.40, 0.5, 49 | 0.01, 0.49, 0.40, 0.02, 6.8
2.0 | 0.03, 0.33, 0.40, 1.1, 4.0 | 0.02, 0.36, 0.40, 0.6, 5.0 | 0.015, 0.43, 0.40, 0.2, 6.0
4.0 |0.04, 0.30, 0.40, 1.6, 3.1 | 0.03, 0.32, 0.39, 1.0, 3.5 | 0.02, 0.37, 0.39, 0.5, 5.4

Table 5.4: Ploo/PO = 10 and PQOO/PO = 0.
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