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1. Introduction

Reduced order models (ROMs) have been successfully used in the numerical simulation of structure-dominated fluid flows
(see, e.g., [1-15]). Since they use a small number of carefully chosen basis functions (modes), ROMs can represent a com-
putationally efficient alternative to standard numerical discretizations. For convection-dominated flows, however, standard
ROMs generally yield inaccurate results, usually in the form of spurious numerical oscillations (see, e.g., [ 16,17]). To mitigate
these ROM inaccuracies, several numerical stabilization techniques have been proposed over the years (see, e.g., [17-23]).
Regularized ROMs (Reg-ROMs) are recently proposed stabilized ROMs for the numerical simulation of convection-dominated
flows [24-26]. These Reg-ROMs use explicit ROM spatial filtering to smooth various ROM terms and thus increase the
numerical stability of the resulting ROM. This idea goes back to the great Jean Leray [27], who used it in the mathematical
study of the Navier-Stokes equations (NSE). In standard CFD, this idea was used to develop regularized models for the
numerical simulation of turbulent flows [28,29]. In a ROM setting, a Reg-ROM was first used in [25] in the numerical
simulation of the 1D Kuramoto-Sivashinsky equations. A different Reg-ROM was proposed in [26] for the numerical
simulation of the 3D NSE. Reg-ROMs were also employed for the stabilization of ROMs in the numerical simulation of a
stochastic Burgers equation [24].

Reg-ROMs were successful in the numerical simulation of convection-dominated flows. Two Reg-ROMs (the Leray ROM
and the evolve-then-filter ROM) were used in the numerical simulation of a 3D flow past a circular cylinder at a Reynolds
number Re = 1000 [26]. These two Reg-ROMs produced accurate results in which the spurious numerical oscillations of
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standard ROMs were significantly decreased. Despite the Reg-ROMSs’ success, to our knowledge there is no numerical analysis
of the Reg-ROMs and the explicit ROM spatial filter used in their development. In this paper, we take a first step in this
direction and prove error estimates for the finite element discretization of (i) the Leray ROM [24-26], which is a Reg-ROM;
and (ii) the ROM differential filter, which is an explicit ROM spatial filter.

The rest of the paper is organized as follows: In Section 2, we present some notation and preliminaries. In Section 3, we
present the ROM differential filter and the Leray ROM. In Section 4, we prove error estimates for the ROM differential filter
and the Leray ROM. In Section 5, we verify numerically the error estimates proved in Section 4. Finally, in Section 6, we draw
conclusions and outline possible future research directions.

2. Notation and preliminaries

We consider the numerical solution of the incompressible Navier-Stokes equations (NSE):

ou
5—vAu+(u-V)u+Vp:f, in 2 x (0, T],
V.u=0, in 2 x (0, T], (1)
u=20, on ds2 x (0, T],
u(x, 0) = u’(x), in £2,

where u(x, t) and p(x, t) represent the fluid velocity and pressure of a flow in the region £2, respectively, forx € £2,t € [0, T],
and £ C R" with n = 2 or 3; the flow is bounded by walls and driven by the force f(x, t); v is the reciprocal of the Reynolds
number; and u°(x) denotes the initial velocity. We also assume that the boundary of the domain, 8£2, is polygonal when
n = 2 and is polyhedral when n = 3.

The following functional spaces and notations will be used in the paper:

X=Hj(2)={vel*R2): Vvel*2)andv =00n32},

Q=L§(9)={qeL2(m:/ qu=o},
2
V=veX:(V-v,q)=0,VqeQ}, and

Vi={v,eX":(V-v.q:)=0.Vqr €Q"}.

where X" C X and Q" C Q are the finite element (FE) spaces of the velocity and pressure, respectively, and h is the
quasi-uniform mesh size. We consider the div-stable pair of FE spaces (X"/Q") = (P™/P™1), m > 2 [30]. We emphasize,
however, that our analysis extends to more general FE spaces.

Let the trilinear form b*(-, -, -) be defined as

1
b*(u,v,w) = 3 [(((u-Vw,w)—((u-Vw,v)].

Lemma 2.1 (See Lemmas 13, 14 and 18 in [30]). For any functions u, v,w € X, the skew-symmetric trilinear form b*(-, -, -)
satisfies

b, v.v) =0, ?)
b*(w, v, w) < C[[Vul[[| Vv VW], (3)
and a sharper bound

b*(w, v, w) < Cy/[lull[VullIVV[[IVW]. (4)
The weak formulation of the NSE (1) reads: Find u € X and p € Q such that

9
(ai:v) +v(Vu, Vv) + b*(w,u,v) - (p, V-v) = (f,v), VvekX,
(V-u,q)=0, YqeQ.

To ensure the uniqueness of the solution to (5) and the validity of standard FE error estimates, we make the following
regularity assumptions [30]:

(5)

Assumption 2.1. In (1), we assume that f € [%(0,T; L*(2)), u° € V,u e [®°0,T; H"(2)), u; € L*(0, T; L*(2)),
u; € L0, T; L(£2)), and p € L*(0, T; H™(£2)).
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For any positive integer M, consider the time instances t; = k At, k =0, ..., M, where At = T /M. Denote the solution
of (5) at time t; to be u* = u(t,) and the force at t, to be f* = f(t), respectively. Denote the FE approximate solution of (6)
at t, = k At to be uh = uy(ty). The FE semidiscretization of (5) can be written as follows: Find u, € V" such that

ou,
(7: Vh) + v(Vay, V) + b* (g, wp, vi) = (F, v), Vv e VP (6)

and u,(-, 0) = ug € V", For the div-stable pair of FE spaces (X"/Q") = (P™/P™') that we considered and for a first-order
time discretization (e.g., backward Euler) with time step At, the following error estimate can be proved using the regularity
properties in Assumption 2.1 [30]:

Assumption 2.2 (Finite Element Error). We assume that the FE approximation “ﬁ of the full discretization of (6) satisfies the
following error estimate:

M
™ — ! |2 + At Y V@t - uf)|? < (R + AP, (7)
k=0

where the constant C does not depend on h, m, At, but can depend on the initial data.

3. The Leray ROM (L-ROM)

In this section, we present the Leray ROM, which we will analyze in Section 4. To this end, we present the standard ROM
(Sections 3.1 and 3.2) and the explicit ROM differential filter (Section 3.3), which will be used to construct the Leray ROM
(Section 3.4).

3.1. Proper orthogonal decomposition

We briefly describe the POD method, following [31]. For a detailed presentation, the reader is referred to [10,32].

Consider an ensemble of snapshots R := span {u(-, tp), ..., u(-, ty)}, which is a collection of velocity data from either
numerical simulation results or experimental observations at time t; = i At,i = 0, ..., M. Let H be a real Hilbert space
endowed with inner product (-, -)3; and norm || - ||. The POD method seeks a low-dimensional basis {¢, . .., ¢,} in H that
optimally approximates the snapshots, i.e., solves the minimization problem: min ﬁzyzo Hu(-, te)— Z;:1 (u(~, te), q)j(-))H

<pj(~)Hi subject to the conditions (¢;, ¢;)1, = &5, 1 < i,j < r, where §; is the Kronecker delta. To solve this minimization

problem, one can consider the eigenvalue problem K z; = A;z;, forj = 1,...,r, where K € RM+DxM+1 js the snapshot
correlation matrix with entries K, = ﬁ(“(" te), u(-, te)), for £,k = 0,..., M, z; is the jth eigenvector, and }; is the
associated eigenvalue. The eigenvalues are positive and sorted in descendmg order )»1 > ... > Ag > 0, where d is the rank
of R. It can then be shown that the POD basis functions are given by (oj Zl olZ)eu(-, tp), 1 <j <r, where(z)is

the £th component of the eigenvector z;. It can also be shown that the followmg error formula holds [10,31]:

2
r

M d
W7 2 [0 = w0 0O = 30 ©
=0

j=1 H j=r+1
We define the ROM space as X" := span {¢, ..., ¢, }.
Remark 3.1. Since the POD basis functions are linear combinations of the snapshots, the POD basis functions satisfy the

boundary conditions in (1) and are solenoidal. If the FE approximations are used as snapshots, the POD basis functions belong
to V", which yields X" c V™.

3.2. The Galerkin ROM (G-ROM)

The ROM employs both Galerkin truncation and Galerkin projection. The former yields an approximation of the velocity
field by a linear combination of the truncated POD basis:

ux,t) X u(x,t)= Zaj Jo;(x 9)

where {aj(t)} are the sought time-varying coefficients representing the POD-Galerkin trajectories. Note thatr << N, where
N denotes the number of degrees of freedom in the full order model (e.g., the FE approximation). Replacing the velocity u



X. Xie et al. / Journal of Computational and Applied Mathematics 328 (2018) 12-29 15

with u, in the NSE (1), using the Galerkin method, and projecting the resulting equations onto the ROM space X", one obtains
the Galerkin ROM (G-ROM) for the NSE: Find u, € X" such that

u
(a—; <p> +v(Vu,, Vo) + b*(u, ur, ) = (f,9), VoeX' (10)

and u.(-,0) € X".In (10), the pressure term vanishes because all POD modes are solenoidal and satisfy the appropriate
boundary conditions. The error analysis of the spatial and temporal discretizations of the G-ROM (10) was considered
in [31,33-38]. Despite its appealing computational efficiency, the G-ROM (10) has generally been limited to laminar flows.
To overcome this restriction, we consider the Leray ROM.

3.3. ROM differential filter (DF)
To construct the Leray ROM, we use the ROM differential filter (DF), which is an explicit ROM spatial filter:
Definition 3.1 (ROM Differential Filter). Vv € X, let ¥' be the unique element of X" such that

(W, V) + (V,v)=w.v) v eX. (11)
The differential filter was introduced in large eddy simulation by Germano [39,40]. In a ROM setting, the DF (11) was first
used in [25] and later extended in [24,26,41].
3.4. The model

We consider the Leray reduced order model (L-ROM) [25,26], which is a regularized ROM: Find u, € X" such that

u _
(8—; <p) +v(Vu,, Vo) + b*(u;, ur, @) = (f,9), Vo eX, (12)

where the initial condition is given by the L* projection of u® on X": u,(-, 0) := Y7, (u°, ¢,)9;.

We consider the full discretization of (12): We use the backward Euler method with a time step At for the time integration
and the FE space P™ with m > 2 and a mesh size h for the spatial discretization. Note that for the time discretization of (12)
we choose the same time step as that used in the FE time discretization of (6). However, different time steps could also be
used [37]. For k = 0, ..., M, we denote the approximation solution of (12) at t, = kAt to be u’r< and the force at t; to be
¥ = f(t), respectively. The discretized L-ROM reads: Find ¥ € X" such that, Vo € X", Vk=0,...,M — 1,

k+1 k .
u —u T
(f, (p) +u(Vu, Vo) + bl uk T 9) = (F, 9), (13)

where the initial condition is u? = er:l(uo, ) ;.
4. Error analysis

In this section, we present the error analysis for the L-ROM discretization (13). We take the FE solutions up(-, t;),
i=0,..., M assnapshots and choose # = L? in the POD generation. The error source includes three main components: the
spatial FE discretization error, the temporal discretization error, and the POD truncation error. We derive the error estimate
in three steps: First, we gather some necessary assumptions and preliminary results in Section 4.1. Then, we prove a ROM
filtering error estimate in Section 4.2. Finally, we prove an L-ROM error estimate in Section 4.3.

4.1. Preliminaries

Definition 4.1 (Generic Constant C). In what follows, C and G, where j is a positive integer, will denote generic constants
that do not depend on §, r, h, At, m, o5, Ay but can depend on v, ug, f, u?, n,T.

Definition 4.2 (ROM Laplacian). Let
A X=X (14)
such that, Vv € X, A,v is the unique element of X" such that

(A, v,)) =—(Vv,Vv,) Wy, €X' (15)

We list a POD inverse estimate, which will be used in what follows. Let S, € R™" with (S;); = (V¢;, V¢;);2 be the POD
stiffness matrix. Let || - || denote the matrix 2-norm.
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Lemma 4.1 (POD Inverse Estimates). For allv. € X', the following POD inverse estimate holds:
IV¥ell2 < Gy (1) Vel 2, (16)

where Cy (1) == /]IS 12

The inverse estimate (16) was proved in Lemma 2 and Remark 2 in [31]. The scaling of C mv( r) with respect to r was
numerically investigated in Remark 3.3 in [34] and in Remark 3.2 in [16].

Definition 4.3 (ROM L? Projection). Let

P L= X (17)
such that, Vv € L?, P,(v) is the unique element of X" such that

(Pr(v), V) = (v,v) Vv, X (18)
Proposition 4.1 (L2 Stability of ROM L? Projection).

IV < vl Vv el (19)
Proof. By choosing v, := P.(v) in (18) and using the Cauchy-Schwarz inequality, we can prove (19). O

The following error estimate was proved in Lemma 3.3 in [42]:

Lemma 4.2. For any u* € X, its [? projection, w* = P,(u¥), satisfies the following error estimates:
d

M 12”" —wf <c(h2m+2+At + Z A]> (20)
+ j=r+1
d
M+1Z”V" —wh’ sc<h2""+||sr||2h2'"+2+(1+||sr||z)Ar2+ > ||¢j||§xj>. (1)

j=r+1

We assume the following estimates, which were also assumed in [34]:

Assumption 4.1. For any u* € X, its L? projection, w¥ = P,(u¥), satisfies the following error estimates:

d

[ — w¥| 5C(h’“+1+At+ ZM) (22)

Jj=r+1

d
|V @ —w)| <c (hm + VIS ™ + VTS A+ | > llgyli? A,»). (23)

j=r+1

4.2. ROM filtering error estimates

In this section, we present theoretical results for the DF (11), which was the essential tool that we used in developing the
Leray ROM (12). The main result in this section is the estimate for the ROM filtering error in Lemma 4.3. To our knowledge,
this is the first estimate for the ROM filtering error. This estimate is an extension of the FE filtering error estimates proved
in [43-45]. This ROM filtering error estimate is important for the L-ROM error analysis in Section 4.3, since we use it to treat
the nonlinear term in (61).

Lemma 4.3 (ROM Filtering Error Estimates). For u* € X and Au* € L?,

—T e
SV —uk )2 + fu* — uk |2
d

<C (h2m+2 +ar+ ) xj) + C 8% || Au¥) 2
j=r+1
d
+c8? (h”" 1S 122+ (14115 ]2) A + ) ||¢j||§xj). (24)

j=r+1
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Proof. Using the definition of the DF (11), we have

52 <Vﬂr, er> + (Jr, vr) =, v,) W eX.
Since Au* e L? (by hypothesis), we also have

82 (Vuk, vv,) + (1, v,) = =8% (Au*,v,) + (ub, v;) Wy eX'.
Subtracting (25) from (26), we get

52 (V(u" —uk), er) + (u" U, vr) =8 (Au',v,) Wy eX.
We decompose the error e := u¥ — u¥' as follows:

e=(u—w,)— (ﬁr —wr) =9 — &,
where w;, € X' is arbitrary. Using (28) in (27), we get: Vv, € X"

82 (V&r, Vv + (&, V) = 8% (Y, Vvp) + (i, vo) + 8 (Au¥, vy).

To prove (24), we let v, := &, € X" in (29) and then use the Cauchy-Schwarz and Young inequalities:

S IVe | + @] = 6% (Y, V&) + (1. @) + 8 (Aut, &)
< SVl Vel + Il 12,1 + 8° | Au’|| |||

B 52<||w||2 . ||V<1>r||2>+<”n”2+ ||¢>r||2>+<84 LA ||<1>r||2>.

2 2 4 4
Rearranging (30) yields

8 2, 1 2 _ & 2 2, 54 k(2
S Ve + S 12 lI” < — [IVall® + ligll” + 67 [|Au”|.
2 2 2

Using (31) and the triangle inequality yields

., -,
8V —u))? + flu — b )?
< C inf (8% V(' —wp)|* + lu — w ) + C 8% [l Au)”.
wreX’

Using Assumption 4.1, we get
d
inf Ju* — wi | < ut - PN < C (h”"“ +aC+ Y] M)-
wreX’ P

. 2
inf V" —w,)|I” < V" — P (uh)))?
wreX’
d
<cC <h2m ISl 2™ 4+ (14 [1S:112) A2 + > llgyll? A,»).

j=r+1

Plugging (33)-(34) into (32) proves (24). O

17

(25)

(26)

(27)

(28)

(32)

(33)

(34)

Remark4.1. Lemma 4.3 extends Lemma 2.12 in [45] from the FE setting to the ROM setting. We could have extended Lemma
2.4in[44]instead of Lemma 2.12 in [45] since the former yields better § scalings of the H! seminorm of the filtering error. We
emphasize, however, that the proof of Lemma 2.4 in [44] uses the H' stability of the L? projection [46,47]. To our knowledge,
the H' stability of the L? projection has not been yet proven in a ROM setting. Thus, we decided to extend to the ROM setting

Lemma 2.12 in [45], which does not rely on the H' stability of the ROM L? projection.

In the following lemma, we prove the stability of the ROM filtered variables, which will be used to prove Theorem 4.1.

This lemma extends Lemma 2.11 in [45] (see also Lemma 2.3 in [44]) from the FE case to the ROM case.
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Lemma 4.4 (Stability of ROM Filtered Variables). For v € X, we have
V'l < vl (35)
IV < ISz vl (36)

For v € X", we have

Vv < [V (37)
Proof. To prove (35),weletv, =v" in(11):

SV + v')? = (v. V). (38)

Applying the Cauchy-Schwarz inequality to the RHS of (38), we get (35).
To prove (36), we use the POD inverse estimate (16) and (35):

. (16) 39
IVl < VISl IV < VIS 2 vl (39)

Finally, to prove (37), we letv, = A, ¥ in(11):

82 (VV, V(Arvf)) + (vf, Arvr) = (v, Arvr) (40)

Using the definition of the ROM Laplacian (15) in (40), we get

-8 (A,V, Aﬁr) - (W, VV) = —(Vv, WT). (41)

Applying the Cauchy-Schwarz inequality to the RHS of (41), we get (37). O

4.3. Leray ROM error estimates
In this section, we prove a stability estimate (Lemma 4.5) and an error estimate (Theorem 4.1) for the L-ROM (13).

Lemma 4.5. The solution of (13) satisfies the following bound:

.
Proof. Choosing ¢ := u*t! in (13) and noting that b*(u¥*" , uf+!, u*+1) = 0 by (2), we obtain

M-1
2+AtZ|}Vu’;+‘H25C VISM<M-1. (42)
k=0

M

u,

(T —uf uf ) AL (VU Vulth) = Ac (Pl (43)
Using the Cauchy-Schwarz and Young inequalities yields

1 1

D e v [V < e ) (44)
Applying the Cauchy-Schwarz and Young inequalities in (44), we get

1 2 1 2 2 At 2 VAt 2

D = 2l v [ < 2 0 (45)

The stability estimate (42) follows by summing (45) from 0 to M-1 O

Theorem 4.1. Under the regularity assumption of the exact solution (Assumption 2.1), the assumption on the FE approximation
(Assumption 2.2), and the assumption on the ROM projection error (Assumption 4.1), the solution of the L-ROM (13) satisfies the
following error estimate: There exists At* > 0 such that the inequality

M-1
u¥ —ul |+ ac 30|V (@t - ui)?
k=0

< Cf<s, h, At [Sell2: IGHS, {||¢j||1}f:r+1) (46)
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holds for all At < At*, where

f(a, h, At IS ll2s PG HE {||¢j||1};‘:r+1>

d
= (hz'“ + IS 2h*™ + (1 + 1S, Il2) A + ||<p]-||§xj>
Jj=r+1

d d
1
1/2
+ 1IS¢1l, (hz’”+2 +a+ ) A,») +3 (hz’”“ +a+ ) A,-)

j=rt1 j=r+1
d
+8 (hzm IS 2™ 4 (1 + S0 12) A2 + Y ||<pj||3kj> + 8. (47)
j=r+1
Proof. We start by splitting the error into two terms:
ukt — ulr<+1 _ (uk+1 _ w:<+1) _ (ulr<+l _ wfﬂ) _ nk+1 _ (I):f+1» (48)
where
wkt = p (). (49)

The first termin (48), p**! = u*+1 —w¥+1 represents the difference between u**! and its [? projection on X", which has been
bounded in Lemma 4.2. The second term, #¥*1, is the remainder. Next, we construct the error equation. We first evaluate
the weak formulation of the NSE (5) at t = t*! and letv = <I>’r‘+1, then subtract the L-ROM (13) from it. We obtain

k+1 k
(ul<+l (I>k+1) o (w 1) 4y (VukH _ vkt V@kH)
t o *Fr At s Er ro r

.
b (uk+l’ ukt, erm) b (ulr<+l 7"’:“» (I>1r<+1) _ (p, V. q>lr<+1) -0 (50)

. . . . k+1_ 4k k . . ..
By subtracting and adding the difference quotient term, (% i 1), in (50), and applying the decomposition (48), we

have
. uk+1 _ uk ; . B v
k+1 k+1 k+1 k+1 +1
(ut - ¥ >+ (0" — @ et

At At

g Ot =k el 1 v (v (! - el Vel

.
1 p* (uk+l’ ukt! q>lr<+1) e (ulr<+l ’ulr<+1’ (I>Ir<+1) _ (p, V. q>1r<+1) —o. (51)

Note that (18) implies that (y*, 1) = 0 and (p**!, 1) = 0. Letting r* = uf*' — "HA];"k , we obtain

% (@’r<+l7 (I>lr(+1) _ ﬁ (§Ir<’ erH—l) ) (V@lr(+l, V¢l’f+l)
_ (rk, (I>lr<+1) v (VnkH, V@I:‘F‘l) e (ukH, uk+t, ¢,1r<+1)
—b* (W"’ ulr<+1’ (ber-l) _ (p’ V- ¢Ir<+]) . (52)

We estimate the LHS of (52) by applying the Cauchy-Schwarz and Young inequalities:

1 2 1 ,
s = S =t = (on ) o ver]
1 5 ) "
> L (e - ) o vl 53)

Using (52) and (53), we obtain
|2k~ [ 2f]° +2vac [ver |’
< 2At (rk’ (I,lr<+l) +20AL (Vnk+l, V<I»’,‘+1) +2At b (uk+l’ ukHt, (I,lrm)
—2Atb* (Wr, w1, q>’;+‘) — 24t (p. V- &) (54)
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Using the Cauchy-Schwarz and Young inequalities in (54), we get
k gk+1 I k+1 k|2 k+1)2
(F a4 < et Vel ] < c ()2, + [ vas ), (55)
k k k k k4112 k4112
V(VA V) <o |9 Ve < 6 (Jen P v (56)
The nonlinear terms in (54) can be written as follows:
—T
b (uk+1! ukt1, (plr<+l) — b (ulr<+1 kT, q)lr<+1>
— b (uk+l, ukH ¢,Ir<+1) b (uk+f” ukt, q51r<+1>
+ b (uk+1r! uktt, (plr<+1> _p (u’f“r, ukt1, (plr<+1)
- .
— p* (uk+1 — yk+1 ’uk+1’ ¢£f+]) + b* (uk+1 , uk+1’ @ﬁ«kl)
—T — T
b (ulr<+1 a1 q51r<+1) + b (ulr<+1 kT q)lr<+1) _p (ulr<+1 LukH, q)f+1) (57)
_ k+1 T k1 gkt
= b* <u+ _uk+1 ’u+ ,¢;+ )
+b* (uk+1 _ ul'f+1r, uk+17 (plr<+l) 4 b* (ul;-Hr7 uk+1 _ ulr<+17 ¢lr<+1)

k+1 Tkl gkt Tkl gkt
:b*(u*—u"+1,u*,dﬁr‘+)+b*<n"“,u+,¢r+>

0
— —T —
_b (¢1r<+1 ukt, q>1r<+1) L b (uer—l el q>1r<+1) b (ot ’¢,1T<+1)7

where in the last term we have used (2). In (57), we apply Lemmas 2.1, 4.4, 4.3 and the Cauchy-Schwarz and Young
inequalities:

1" (4)
b (ulrcﬂ ol ‘I’I:H) 2

(35).(37) 1/2 12
= Cfurt T Va7 e [vert

. 12
Thas |

12 | ——r
k+1
H Vu;

[Vt [ ver|

IA

G (Ju | [va | v+ vt ) (58)

S 4 - r1/2
ik (,]k+1r’uk+1, <I>lr<+1) (S) C an+1r” / ank+]r

vt vt

L I s [ vk | v
< G (IS [ vt vl ) (59)
R N S P R D e R e

(35),(37) 1/2 1/2
= Cler| 7 [ver | [vutt] [vert]

= clebt | [t et

= G (v e el ). (60)
b* (uk-H L e (I>1r<+1) Y ¢ Huk+l | HV (uk+1 _ WT) 12 [Vut+t | [vekt|

IA

R N 2 B G

o

which can be bounded by using Lemma 4.3. Since <I>’r‘+1 € X" C V" the pressure term on the RHS of (54) can be written as

R N
uk+1 — yk+1 H HV (uk+1 — gk+1 )

— (V- e =—(p—q Ve, (62)

where gy, is any function in Q". Thus, the pressure term can be estimated as follows by using the Cauchy-Schwarz and Young
inequalities:

~ (V-2 =G (Ip—aul? + |Vl |*). (63)
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Choosing C;-C; appropriately, then substituting inequalities (55)-(56), (58)-(60), and (61) in (54), we obtain
ok 1| = ok + o ac [ vkt
<o ac |+ ac O 4 ae Jut | [ut | o
A [V [ ac |vat | ek

. _ 2
i Huk+1 gk H HV (uk+1 _ uk+1r) H | v+ ”2 v At D — ) (64)

Summing (64) fromk =0tok = M — 1, we have

M-1 M-1

o+ o e Y- v |7 < ot o e (1,
k=0 k=0
M-1 ) M-1 5 )
30 [ a9 1Sy Y 9
k=0 k=0

M-1 4 5 M-1 M-1 5
4 Z ||vuk+1 || ||@lr<+1 || + Z ”p _ Qh||2 + Z HV”IH-] ||
k=0 k=0 k=0

M-1
3 o [ )] ).
k=0

The first term on the RHS of (65) vanishes, since u? = w? . By using the Poincaré-Friedrichs inequality, the second term on
the RHS of (65) can be estimated as follows (see, e.g., [42]):

M-1 M—-1
A7, s cioae Y7 < oAk, (66)
k=0 k=0
Using (21), the third term on the RHS of (65) can be estimated as follows:
M-1 d
ALY IV < G (hz'” + IS IR + (1 + 1S, I2) A + ||¢j||§xj). (67)
k=0 j=r+1

To estimate the fourth term on the RHS of (65), we use Lemma 4.5 and Assumption 4.1:

M-1 M-1

At Y [l | vl ot P E s ae Y [vult | [vate)?
k=0 k=0
(42) 2 (23) d
o 2l = (th + IS 1202 4 (1 4 (IS, [12) AL + Z ”‘pj”?)&j), (68)

Jj=r+1

where we used estimate (23) in the derivation of (68). Using (21) would not have been enough for the asymptotic
convergence of (68).
Using Assumption 4.1, the fifth term on the RHS of (65) can be bounded as follows:

M-1
AN Y v
k=0

2
M-1 d
(22) ~ 2
< CuAtls ) Y [ve| (hm“ +ar+ | Y A,)
k=0 j=r+1
(Assumption 2.1) d ’
< G sl <h'"“ +at+ |y x,-) : (69)
j=r+1
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To estimate the seventh term on the RHS of (65), we use Lemma 4.3:
M-1
At Z Huk+1 _ rkH’” HV (uk+1 _ rk“’) ” ||vuk+1 ”2
k=0

M-1 d
Loar L vl §[ (ot Y )
k=0

j=r+1

d
+8 <h2m ISl PP 4 (14 (1S 112) A8 + Y ||<o,-||§xj> + 54]
j=r+1

d

(Assumption 2.1) 1 Im2
(e )

j=r+1
d
+82 (hz'" IS 2 B2 4 (14 (S0 12) A2 + Y g1 xj) - 8“]. (70)
Jj=r+1
Since in (62) g, was an arbitrary function in Q", we can use the regularity in Assumption 2.1 to bound the eighth term on
the RHS of (65) as follows:

M-1

At Y " llp = qull® < Cig h*™. (71)

k=0
Collecting (66)-(71), Eq. (65) becomes

M-1

|17+ G ar Y [
k=0
M-1
<o far 3 vt o)
k=0

d
+ (hz"‘ IS 2h™™ + (1 + 1S, [l2) A + Y ||¢,-||§Aj>
Jj=r+1

2
d

IS 1172 (h’““ At | Yy ) + R 4 A2
j=r+1

d
1 2m+-2 2
+5 [(h + A+ Yy

j=r+1

d
+6° (h“ IS ll2 B2 4 (14 (1S 112) AL + Y ||¢,~||§Aj) + 64] }

j=r+1

M-1
— G far Y [vun | o)
k=0

d
n <h2m F1SH 2P + (1 + 1S, 12) A2 + > gyl x,»)

j=r+1

d d
1
+||Sr||;/2<h2m+2+At2+ § A’j) +g <h2m+2+At2+ § )\]>

j=r+1 j=r+1

d
+38 (hz'“ ISl B2 4 (14 (1S 112) At + ) ||¢j||§xj) + 6 }
Jj=r+1



X. Xie et al. / Journal of Computational and Applied Mathematics 328 (2018) 12-29 23

M-1
47 Cg{At Z HVHI<+1H4 ”(I,lrm”z
k=

+f<8, h, At ISe N2, IGHS {||¢j||1};’:r+1> } (72)

A discrete Gronwall lemma (see Lemma 27 in [30] and Lemma 5.1 in [48]) implies that, for small enough At (i.e., At <
(Co maxy <=m || Vu* ||4)_] ), the following inequality holds:

M-1
[} "+ o ac Y Vel
k=0

< C17}'<5, h, At IS ll2s KL {||<oj||1}f:r+1>. (73)

By using (73), the triangle inequality, and (21)-(22), we obtain
M-1
u = | ae 37V (@t - uk [
k=0

< cr(a, h, A IS ll2s IGHL s {||<p,-||1}f=r+1). (74)

This completes the proof. O

5. Numerical results

In this section, we perform a numerical investigation of the theoretical results obtained in Section 4. To this end,
we investigate whether the ROM filtering error estimate in Lemma 4.3 and the L-ROM approximation error estimate in
Theorem 4.1 are recovered numerically.

In the numerical investigation, we consider the same test problem and computational setting as those used in Section IV.B
in [42]. The problem is governed by the 2D incompressible NSE with an analytical solution. The exact velocity, u = (u, v),
has the components u = % arctan(—500(y — t))sin(wy), v = % arctan(—500(x — t)) sin(;rx), and the exact pressure is given
by p = 0. The diffusion coefficient is v = 1073 and the forcing term is chosen to match the exact solution. The spatial
domain [0, 1] x [0, 1] is discretized with Taylor-Hood FEs with mesh size h = 1/64. To generate the POD basis, snapshots
are collected over the time interval [0, 1] at every AT = 1072 by recording the exact values of u and v on the FE mesh.
Following the ansatz in (9), we do not use the common centering trajectory approach; instead, we apply the method of
snapshots to the snapshot data directly. The dimension of the POD basis is 101.

5.1. ROM filtering error

In this section, we perform a numerical investigation of 953 ROM filtering error (24)in LemEerl 4.3. We define the following
average squared filtering errors: £2 = 55 S ollut —uk |2 g = et S, lIV(uk — uk )||2. The ROM filtering error
bound (24) in Lemma 4.3 depends on the parameters h, At, § as well as the ROM truncation errors A;z = Z;’zrﬂ)\j, A;l =
Z;i:r +1 ||<pj||§ Aj. We numerically investigate the rates of convergence of &> and &1 with respect to the time step At, filter
radius é, and ROM truncation error A;.

First, we investigate the convergence rates with respect to 8. To this end, we fix h = 1/64,r = 95 and At = 10~* (note
that the approximation error is independent of the time step size in this case because the snapshots are FE interpolants of
the exact solutions), and vary 8. With these choices, hi*™ = ©(1078), Al = 0(1078), Ay = O(1073),and ||S; ]I, = ©O(10°).
Thus, the theoretical error estimate (24) in Lemma 4.3 yields the following asymptotic scaling:

g '~ os?). (75)

Note that (24) does not provide a scaling between &1 and 4.

We apply the DF (11) to the snapshot data and measure the numerical errors £ and &1, which are listed in Table 1.
Linear regressions of the errors, which are plotted in Fig. 1 for decreasing § values, show the following scalings for the ROM
filtering errors:

Ep ~ O(8%°%) (76)
Eqn ~ 0(81%). (77)
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Fig. 1. Linear regression of £;> and &1 with respect to 8.

Table 1

Average ROM filtering errors &> and &1 for decreasing § values.
) Ep Et
1x 1072 3.54 x 1073 9.87 x 10'
5x 1073 9.14 x 107* 4.65 x 10!
2.5 %1073 1.63 x 107* 1.22 x 10!
2.0 x 1073 8.41 x 107° 6.79 x 10°
1.67 x 1073 4.71 x 1073 3.97 x 10°
1.25 x 103 1.77 x 107> 1.56 x 10°

Table 2

Average ROM filtering errors £;2 and &1 for increasing r values.
r Al &p Egt
30 1.23 x 10? 3.29 x 1073 1.23 x 10?
40 9.26 x 10! 1.70 x 1073 9.27 x 10'
50 6.73 x 10! 9.05 x 1074 6.74 x 10"
60 4.44 x 10! 491 x 107 4.46 x 10!
70 2.09 x 10! 2.39 x 1074 2.14 x 10'
80 6.42 x 100 8.11 x 107° 7.06 x 10°

Thus, the theoretical scaling (75) is numerically recovered. On the other hand, although not verified theoretically in (24), we
do observe the almost quadratic convergence of &1 with respect to § (see Remark 4.1).

Next, we investigate the convergence rates with respect to A’r_ﬂ. To this end, we fix h = 1/64, At = 1074, § = 1073
and vary r. With these choices, i*™ = 0(1078), §2 = ©(107%), and ||S; ||, = ©(10*) — ©(10%). Thus, the theoretical error
estimate (24) in Lemma 4.3 yields the following asymptotic scalings:

Q) .

&2 ~ O(Ay) (78)
(24)

En ~ O(Ap1). (79)

The numerical errors &2 and &1 are listed in Table 2 for increasing r values. The corresponding linear regressions, which
are shown in Fig. 2, indicate the following scalings between the average ROM filtering errors and the ROM truncation error:

g2 ~ 0 ((A;)") (80)
En ~ 0 ((AL)Y). (81)

Thus, the theoretical scalings (78) and (79) are numerically recovered.
5.2. L-ROM approximation error

In this section, we perform a numerical investigation of the L-ROM approximation error estimate (46) in Theorem 4.1. The
Evil
L-ROM approximation error at the final time step is 5{‘;’ = ||uM —uM ||. We numerically investigate the rates of convergence
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Table 3

L-ROM approximation error ££‘§’ for decreasing At values.
At ey
1x 1072 2.36 x 1072
5x 1073 2.33 x 1072
2.5 %1073 6.49 x 1073
1.25 x 1073 3.49 x 1073
6.25 x 1074 1.96 x 1073

of 5{‘;’ with respect to the time step At, filter radius 8, and ROM truncation error A;l. To this end, we first note that in our
numerical investigation § < 1 and ||S;|; > 1. Thus, the L-ROM approximation error bound (47) in Theorem 4.1 simplifies
to the following:

f(& h, At 1Sz, KL 41 {||<p,-||1};LrH>
= B*™ + [|S: [2h*™ + IS, |2 AL + AT,
1
+1ISe 1152 A%, + 3 (hzm“ + A + A;) +83. (82)

The control parameters in the L-ROM approximation error rates of convergence in (82) are h, At, r, §.

To determine the L-ROM approximation error rate of convergence with respect to At, we fixh = 1/64,r = 99,8 = 1074
and vary At. With these choices, ™ = 0(107%), A7, = 0(107%), A, = O(107?),and ||S; |, = O(10%). Thus, the theoretical
L-ROM approximation error bound (82) predicts the following rate of convergence of 5{‘;’ with respect to At:

g4 = O(At). (83)

The L-ROM approximation error Si‘g’ is listed in Table 3 for decreasing At values. The corresponding linear regression, which
is shown in Fig. 3, indicates the following L-ROM approximation error rate of convergence with respect to At:

gy = o(A"®). (84)

Thus, the theoretical rate of convergence (83) is numerically recovered.

To determine the L-ROM approximation error rate of convergence with respect to §, we fix h = 1/64,r = 99, At = 1074
and vary 8. With these choices, > = 0(107%), At*> = 0(107%), A}, = O(107®), AT, = O(107?),and ||S; ||, = O(10°). Thus,
the theoretical L-ROM approximation error bound (82) predicts the following rate of convergence of SZ‘Q’ with respect to §:

gy = o(8’?). (85)

The L-ROM approximation error £¥ is listed in Table 4 for decreasing § values. The corresponding linear regression, which
is shown in Fig. 4, indicates the folllowing L-ROM approximation error rate of convergence with respect to §:

gy = o(8*>%). (86)
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Table 4
L-ROM approximation error 5{‘;' for decreasing & values.
8 el
5x 107! 8.47 x 107!
2.5x 107! 4.15 x 107!
1.25 x 107! 1.14 x 107!
6.25 x 1072 1.96 x 1072
3.12 x 1072 2.81x 1073
1.56 x 1072 9.59 x 1074

We note that the numerical rate of convergence (86) is higher than the theoretical rate of convergence (85) (see
Remark 4.1).

To determine the L-ROM approximation error rate of convergence with respect to A, ,, we fix h = 1/64, At = 1074,
8 = 1072 and vary r. With these choices, h?™ = ©(1078) and ||S;|, = ©O(10%) — ©(10°). Thus, the theoretical L-ROM
approximation error bound (82) predicts the following rate of convergence of Si‘g' with respect to A;l :

el = o(AT,). (87)

The L-ROM approximation error £ is listed in Table 5 for increasing r values. The corresponding linear regression, which is
shown in Fig. 5, indicates the following L-ROM approximation error rate of convergence with respect to A,

&3 = O((A;)"). (88)

Thus, the theoretical rate of convergence (87) is numerically recovered.
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Table 5
L-ROM approximation error sg for increasing r values.
r A ey
10 1.99 x 10? 9.62 x 1072
20 1.57 x 10? 5.15 x 1072
30 1.22 x 10? 3.05 x 1072
40 9.26 x 10" 2.09 x 1072
50 6.73 x 10" 1.83 x 1072
‘ o &l
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Fig. 5. Linear regression of s;g’ with respect to ALI.

6. Conclusions and outlook

Several modeling strategies have been proposed to alleviate the spurious numerical oscillations that generally appear
when standard ROMs are used to simulate convection-dominated flows. Reg-ROMs are recently proposed ROMs in which
numerical stabilization is achieved through explicit ROM spatial filtering. Reg-ROMs were successfully used in [26] in the
numerical simulation of the 3D flow past a circular cylinder at a Reynolds number Re = 1000. Reg-ROMs were also employed
in [24] for the stabilization of ROMs in the numerical simulation of a stochastic Burgers equation. To our knowledge, however,
there is no numerical analysis of the Reg-ROMs and the explicit ROM spatial filter.

In this paper, we took a first step in this direction and, in Theorem 4.1, we proved error estimates for the FE discretization
of one such Reg-ROM, the L-ROM [24-26]. In Lemma 4.3, we also proved error estimates for the FE discretization of the ROM
differential filter, which is the explicit ROM spatial filter that we used in the construction of the L-ROM. Finally, in Section 5,
we provided a numerical verification of the ROM filtering error estimate derived in Lemma 4.3 and the L-ROM approximation
error estimate in Theorem 4.1. In our numerical investigation, we considered the 2D incompressible NSE with an analytical
solution and small diffusion coefficient v = 1073, which is the computational setting used in [42].

There are several research directions that could be pursued. As noted in Remark 4.1, one could try to extend from the
FE setting to the ROM setting Lemma 2.4 in [44] instead of Lemma 2.12 in [45], as we did in Lemma 4.3, since the former
could yield better § scalings of the H! seminorm of the filtering error. However, one would probably first have to prove the
H' stability of the ROM L? projection, which, to our knowledge, has not been achieved yet. Another research direction is the
extension of the numerical analysis for the L-ROM to other Reg-ROMs, such as the evolve-then-filter ROM [26]. Finally, one
could also try to prove error estimates for the novel large eddy simulation ROMs introduced in [41], in which the explicit
ROM filter error plays a central role.
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