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SUMMARY

In this paper, we propose a new evolve-then-filter reduced order model (EF-ROM). This is a regularized
ROM (Reg-ROM), which aims to add numerical stabilization to proper orthogonal decomposition (POD)
ROMs for convection-dominated flows. We also consider the Leray ROM (L-ROM). These two Reg-ROMs
use explicit ROM spatial filtering to smooth (regularize) various terms in the ROMs. Two spatial filters
are used: a POD projection onto a POD subspace (Proj) and a POD differential filter (DF). The four Reg-
ROM/filter combinations are tested in the numerical simulation of the three-dimensional flow past a circular
cylinder at a Reynolds number Re D 1000. Overall, the most accurate Reg-ROM/filter combination is EF-
ROM-DF. Furthermore, the spatial filter has a higher impact on the Reg-ROM than the regularization used.
Indeed, the DF generally yields better results than Proj for both the EF-ROM and L-ROM. Finally, the CPU
times of the four Reg-ROM/filter combinations are orders of magnitude lower than the CPU time of the
DNS. Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Important applications require repeated numerical simulations with a high computational cost [1–4].
To enforce a balance between accuracy and computational cost, reduced order models (ROMs)
emerge as natural choices. The proper orthogonal decomposition (POD) is one of the most suc-
cessful approaches for ROM development. An accurate numerical simulation is used in POD to
extract the dominant structures, which are then used in a Galerkin approximation of the underlying
equations [2, 5]. In this paper, POD will be exclusively used to construct ROMs.

Although ROMs have been successful across a range of disciplines, their use in convection-
dominated flows has been hampered by their notorious numerical instability. By numerical
instability, we do not mean that there are exponentially growing modes in the standard Galerkin
ROM (indeed, as the ROM is a Galerkin method, the usual energy bound applies); instead, we mean
that even though the total energy is bounded, the standard Galerkin ROM aliases energy inappropri-
ately to produce an unreasonable solution. Because the number of POD basis functions is usually
small (e.g., O.10/), the standard Galerkin ROM approach provides an efficient surrogate model
for the underlying flows. However, for convection-dominated flows, the standard ROM does not
represent a viable tool [6–13], because it generally yields spurious numerical oscillations. These
results clearly indicate the need for ROM stabilization. Over the years, numerous strategies have
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been devised to alleviate this numerical instability of the standard ROM (e.g., [6–8, 11–19] and
references therein).

In this paper, we investigate regularized ROMs (Reg-ROMs), which use explicit spatial filtering to
stabilize the ROMs and enable their use in convection-dominated flows. The idea of using a spatial
filter to stabilize numerical simulations with spectral methods has a long history [20–24]. In ROMs,
spatial filtering has been used as a preprocessing step, to filter out the noise in the snapshot data,
that is, in the generation of the POD modes (see, e.g., Section 5 in [25] for a survey of relevant
work). We emphasize, however, that our approach is fundamentally different. Indeed, we explicitly
use spatial filters to smooth (regularize) different terms in the actual ROMs, that is, we modify the
mathematical model, not the input data. The first explicit ROM spatial filter that we use is the POD
projection (Proj), which is the projection of the ROM variables on a subspace of the POD space [12,
13, 26]. The other spatial filter that we employ is a POD differential filter (DF) [27–29].

In this paper, we put forth a new evolve-then-filter ROM (EF-ROM). We also extend and inves-
tigate the Leray ROM (L-ROM) proposed in [29]. To our knowledge, the new EF-ROM and the
L-ROM are the only Reg-ROMs in current use. Note that these Reg-ROMs are fundamentally dif-
ferent from the calibration approaches used in [30–34]. Indeed, the Reg-ROMs investigated in this
paper use equations that are different from those employed in the Galerkin ROM. The calibration
models in [30–34], on the other hand, utilize the standard ROM equations and only calibrate their
coefficients by utilizing a Tikhonov type regularization.

The rest of the paper is organized as follows: In Section 2, we briefly present the POD and the
standard Galerkin ROM. In Section 3, we discuss the ROM spatial filters (i.e., the Proj and DF). In
Section 4, we employ the Proj and DF to lay foundations for the new EF-ROM and the L-ROM. In
Section 5, we present numerical results for the two Reg-ROMs and two ROM spatial filters for the
three-dimensional (3D) flow past a circular cylinder at a Reynolds number Re D 1000. Finally, we
draw conclusions in Section 6.

2. REDUCED ORDER MODELING

In this section, the POD, the standard Galerkin ROM and the centering trajectory approaches are
presented succinctly. The Navier–Stokes equations (NSE) are used as mathematical model:

ut �Re
�1�uC u � ruCrp D 0; (1)

r � u D 0; (2)

where u is the velocity, p the pressure and Re the Reynolds number. In this paper, the NSE
(1)–(2) are supplemented with the initial condition u.x; 0/ D u0.x/ and steady Dirichlet
boundary conditions.

2.1. Proper orthogonal decomposition

One of the most popular reduced order modeling techniques is the POD, which we briefly describe
next. For more details, the reader is referred to, for example, [2, 3, 5]. The POD starts with the snap-
shots ¹u1

h
; : : : ;u

Ns
h
º, which are numerical approximations of (1)–(2) at Ns different time instances.

The finite element (FE) solutions of (1)–(2) are considered as snapshots in this section. We empha-
size, however, that other numerical methods can be used instead. The POD seeks a low-dimensional
basis that approximates the snapshots optimally with respect to a certain norm. In this paper, the
commonly used L2-norm will be chosen. The solution of the minimization problem is equivalent to
the solution of the eigenvalue problem

Y Y >M'j D �j'j ; j D 1; : : : ; N; (3)

where 'j and �j denote the vector of the FE coefficients of the POD basis functions and the POD
eigenvalues, respectively, Y denotes the snapshot matrix, whose columns correspond to the FE
coefficients of the snapshots, M denotes the FE mass matrix, and N is the dimension of the FE
space Xh [35]. The eigenvalues are real and non-negative, so they can be ordered as follows:
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�1 > �2 > : : : > �R > �RC1 D : : : D �N D 0: (4)

The POD basis consists of the normalized functions ¹'j º
r
jD1, which correspond to the first r 6 N

largest eigenvalues. Thus, the POD space is defined as X r WD span¹'1; : : : ;'rº.
The centering trajectory method is popular in ROM development [2]. In this approach, the snap-

shots ¹u1
h
; : : : ;u

Ns
h
º are replaced by ¹u1

h
� U ; : : : ;uNs

h
� U º, where U D 1

Ns

PNs
iD1 u

i
h

is the
centering trajectory and ui

h
� U are the snapshot fluctuations. Thus, the POD basis functions are

computed from the snapshot fluctuations ui
h
� U ; i D 1; : : : ; Ns . The centering trajectory method

is especially useful for problems that have steady-state nonhomogeneous Dirichlet boundary con-
ditions, such as the boundary conditions in the 3D flow past a cylinder investigated in Section 5.
Because in this case the snapshot fluctuations ui

h
�U ; i D 1; : : : ; Ns satisfy homogeneous Dirichlet

boundary conditions, the centering trajectory method avoids the challenges posed by the nonho-
mogeneous boundary conditions in ROMs (see, however, [36] for alternative approaches). Thus, in
what follows, we will use the centering trajectory approach.

2.2. The Galerkin ROM (G-ROM)

To develop the standard Galerkin ROM, we start by considering the POD approximation of the
velocity

ur.x; t / � U .x/C

rX
jD1

aj .t/'j .x/; (5)

where ¹aj .t/ºrjD1 are the sought time-varying coefficients that represent the POD-Galerkin trajec-
tories. Because the POD basis functions are simply linear combinations of the snapshots, we assume
that each POD basis function is weakly divergence free and the compressibility constraint is auto-
matically satisfied. This is a standard assumption in NSE ROMs; see, for example, Section 3 of [35]
for further discussion. By using the POD basis in a Galerkin approximation of the NSE, the standard
Galerkin ROM (G-ROM) is obtained: 8 i D 1; : : : ; r ,

�
@ur

@t
;'i

�
C

2

Re

�
D.ur/;r'i

�
C

�
.ur � r/ur ;'i

�
D 0 ; (6)

where D.ur/ WD .rur C .rur/>/=2 is the deformation tensor of ur . The G-ROM (6) yields the
following autonomous dynamical system for the vector of time coefficients, a.t/:

Pa D bC AaC a>Ba; (7)

where b, A, and B correspond to the constant, linear, and quadratic terms in the numerical
discretization of the NSE (1)–(2), respectively. The initial conditions are obtained by projection:

aj .0/ D
�
u0 � U;'j

�
; j D 1; : : : ; r: (8)

The finite dimensional system (7) can be written componentwise as follows: For all i D 1; : : : ; r ,

Pai .t/ D bi C

rX
mD1

Aimam.t/C

rX
mD1

rX
nD1

Bimnan.t/am.t/; (9)

where

bi D �
�
U � rU;'i

�
�

2

Re

�
rUCrU>

2
;r'i

�
; (10)

Aim D �
�
U � r'm;'i

�
�
�
'm � rU;'i

�
�

2

Re

�
r'm Cr'

>
m

2
;r'i

�
; (11)

Bimn D �
�
'm � r'n;'i

�
: (12)
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3. EXPLICIT REDUCED ORDER MODEL SPATIAL FILTERING

The Reg-ROMs discussed in Section 4 use explicit ROM spatial filtering to smooth the flow vari-
ables and increase the numerical stability of the models. In spectral methods, spatial filtering has
been used for a long time to stabilize numerical simulations of convection-dominated flows [20–24].
In ROMs, spatial filtering has been used as a preprocessing step, to filter out the noise in the snap-
shot data and, thus, in the generation of the POD modes (see, e.g., Section 5 in [25] for a survey of
relevant work). We emphasize, however, that the spatial filtering used in Reg-ROMs is fundamen-
tally different. Indeed, in the preprocessing spatial filtering used in [25], the snapshots (i.e., the input
data) are spatially filtered, but the ROMs (i.e., the mathematical models) are not. In Reg-ROMs, on
the other hand, some of the ROM terms are explicitly filtered, and thus, the mathematical model is
modified. Two types of explicit ROM spatial filters are considered in this section: a POD projec-
tion (Section 3.1) and a POD DF (Section 3.2; see [37] for a related, but different, approach). The
properties of these explicit ROM spatial filters are discussed in Section 3.3.

3.1. The proper orthogonal decomposition projection

For a fixed r1 < r and a given ur 2 X r , the POD projection (Proj) seeks ur 2 X r1 such that
�
ur ;'j

�
D .ur ;'j /; 8 j D 1; : : : r1: (13)

The Proj (13) has been used for theoretical purposes, for example, in the error analysis of the
G-ROM [26]. To our knowledge, the Proj has been used as an explicit ROM spatial filter only in
[13].

3.2. The proper orthogonal decomposition differential filter

The POD differential filter (DF) is defined as follows: Let ı be the radius of the DF. For a given
ur 2 X r , find ur 2 X r such that

��
I � ı2�

�
ur ;'j

�
D .ur ;'j /; 8 j D 1; : : : r : (14)

Differential filters have been used in the simulation of convection-dominated flows with standard
numerical methods [27, 28]. In reduced order modeling, the DF was first used in [29] in a peri-
odic, one-dimensional (1D) setting. In this paper, we extend the DF used in [29] to a non-periodic,
3D setting.

3.3. ROM spatial filter properties

The Proj (13) and DF (14) share several appealing properties [38]: (i) They act as spatial filters,
because they eliminate the small scales (i.e., high frequencies) from the input. Indeed, the DF (14)
uses an elliptic operator to smooth the input variable. The effect of the Proj on an input from
the POD space X r is the elimination of the components corresponding to the POD basis func-
tions ¹'j º

r
jDr1C1

, which generally correspond to small spatial scales (high frequencies). (ii) Both
ROM spatial filters have a low computational overhead. Indeed, the Proj amounts to simply setting
aj D 0; j D r1 C 1; : : : ; r in the expansion ur.x; t / D U .x/C

Pr
jD1 aj .t/'j .x/. The DF (14),

on the other hand, amounts to solving a linear system with a very small r � r matrix that is pre-
computed. (iii) Both ROM spatial filters preserve incompressibility in the NSE, because they are
linear operators.

Although the Proj (13) and the DF (14) share the aformentioned properties, they are different in
one significant aspect. Indeed, both the DF and Proj are explicit ROM spatial filters that eliminate
the small spatial scales from the input data. We emphasize, however, that the DF uses an explicit
length scale ı (i.e., the radius of the filter), whereas Proj employs an implicit length scale, which is
determined by the collection of POD modes ¹'j º

r
jDr1C1

.
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4. REGULARIZED ROMS

In the ROM setting, to ensure a low computational cost, only relatively few POD modes are gen-
erally included. Using the standard G-ROM (6) with a few POD modes in realistic flows yields
numerical oscillations [2, 6, 7, 9, 12, 13, 39, 40]. To alleviate this inaccurate behavior of the standard
G-ROM, we propose a new Reg-ROM, the evolve-then-filter Reg-ROM. Furthermore, we extend to
the 3D, non-periodic NSE the Reg-ROM proposed in [29]. These two Reg-ROMs use the spatial
filters defined in Section 3 to increase their numerical stability. Because the computational cost of
the spatial filters is negligible, the computational cost of these Reg-ROMs will be very low, similar
to the computational cost of the G-ROM.

4.1. The Leray ROM

We extend to the 3D, non-periodic NSE the Leray regularized ROM (L-ROM) proposed in [29] for
the 1D, periodic Kuramoto-Sivashinsky equations: 8n D 0; : : : ;M and 8 i D 1; : : : ; r ,

�
unC1r � unr

�t
;'i

�
C

2

Re

�
D.unr /;r'i

�
C

�
.unr � r/u

n
r ;'i

�
D 0 ; (15)

where �t is the time step. The filtered convective term in (15) is defined as follows:

unr .x; t / � U .x/C

rX
jD1

anj .t/'j .x/ : (16)

The coefficients anj in (16) are defined as

rX
jD1

anj .t/'j D

rX
jD1

anj .t/'j ; (17)

where the filtering in (17) is effected by using the explicit ROM spatial filters defined in Sections 3.1
and 3.2. We note that a forward Euler time discretization was used in (16), but other time
discretizations are possible [41].

Remark 4.1
We emphasize that, in (16), only the unsteady (i.e., time-dependent) component of unr was fil-
tered; the steady centering trajectory component was not filtered. This approach is consistent with
the very purpose of Reg-ROMs, that is, smoothing (regularizing) only the ROM terms that are the
main contributors to the ROM’s instability. Indeed, just as in the Fourier/spectral setting, the center-
ing trajectory is generally the smoothest, most regular ROM component, whereas the smoothness
of the velocity fluctuations decreases as their POD index increases. Thus, it is natural to expect
that the velocity fluctuations and not the centering trajectory are generally responsible for the
ROM’s instability.

The L-ROM (15) yields the following finite dimensional system: For all i D 1; : : : ; r ,

Pai .t/ D bi C

rX
mD1

Aimam.t/C

rX
mD1

QAimam.t/C

rX
mD1

rX
nD1

Bimnam.t/an.t/; (18)

where

bi D �
�
U � rU;'i

�
�
2

Re

�
rUCrU>

2
;r'i

�
; (19)

Aim D �
�
U � r'm;'i

�
�
2

Re

�
r'm Cr'm

>

2
;r'i

�
; (20)
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QAim D �
�
'm � rU;'i

�
; (21)

Bimn D �
�
'm � r'n;'i

�
: (22)

The Leray model was first used by Leray [42] as a theoretical tool to prove local existence and
uniqueness of weak solutions of the NSE. The Leray model has been recently used as a numerical
tool in the simulation of convection-dominated flows with standard (e.g., FE) numerical methods
[43]. To our knowledge, the Leray model was first used in a ROM setting in [29] for the numerical
simulation of the 1D Kuramoto–Sivashinsky equation in a periodic setting. In [29], the spatial filter
used was the DF. In this paper, we extend the L-ROM to the non-periodic 3D NSE. Furthermore,
we investigate both the DF and the Proj as spatial filters.

4.2. The evolve-then-filter ROM

We propose a new Reg-ROM, the evolve-then-filter ROM (EF-ROM): 8n D 0; : : : ;M and 8 i D
1; : : : ; r; �

wnC1r � unr
�t

;'i

�
C

2

Re

�
D.unr /;r'i

�
C

�
.unr � r/u

n
r ;'i

�
D 0 ; (23)

unC1r D wnC1r ; (24)

where �t is the time step. The ‘evolve’ step in the EF-ROM (i.e., Equation (23)) is just one
step of the time discretization of the standard G-ROM (6). The ‘filter’ step in the EF-ROM (i.e.,
Equation (24)) consists of filtering of the intermediate solution obtained in the ‘evolve’ step. This
filtering in (24) is defined as in (16)–(17), that is, its unsteady component is filtered, but its steady
component (i.e., the centering trajectory) is not filtered. This strategy is consistent with the Reg-
ROM strategy (Remark 4.1). As mentioned in Section 4.1, a forward Euler time discretization was
used in (23), but other time discretizations are possible [41].

The evolve-then-filter model has been used as a numerical tool in the simulation of convection-
dominated flows with standard (e.g., FE or spectral element) numerical methods [43]. We
emphasize, however, that, to our knowledge, the evolve-then-filter model has not been used in a
ROM setting.

5. NUMERICAL TESTS

Goals This section has two goals: The first goal is to compare the EF-ROM (23)–(24) with the
L-ROM (15). The second goal is to investigate the effect of explicit ROM spatial filtering (the
Proj and the DF) on the L-ROM and EF-ROM. Numerical results are presented for a 3D flow
past a cylinder at Reynolds number Re D 1000. We also include results for the G-ROM (6). A
successful Reg-ROM should at least perform better than the G-ROM. Finally, a DNS projection
of the evolution of the POD modes serves as benchmark for our numerical simulations; this is
the general procedure used in standard CFD (see, e.g., [43]).

Models For each of the two Reg-ROMs (the L-ROM and the EF-ROM), two distinct filtering
strategies are considered: the Proj and the DF. Thus, four Reg-ROM/filter combinations are
investigated. For clarity, the following notation is used for the resulting Reg-ROM/filter combi-
nations: L-ROM-DF for the L-ROM with the DF, L-ROM-Proj for the L-ROM with the Proj,
EF-ROM-DF for the EF-ROM with the DF, and EF-ROM-Proj for the EF-ROM with the Proj.

Criteria The qualitative behavior of the ROMs is judged according to the following six criteria
[13]: (i) the kinetic energy spectrum; (ii) the mean velocity; (iii) the Reynolds stresses; (iv) the
root mean square (rms) values of the velocity fluctuations; (v) the time evolution of the POD
coefficients; and (vi) the Strouhal number. The first four criteria are statistics that measure the
temporal and spatial average behavior of the ROMs, whereas the fifth criterion measures the
instantaneous behavior of the ROMs. We also include a computational efficiency assessment for
all the ROMs. Next, we briefly present these criteria. To this end, we first describe the averaging
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operator, which is used in all the statistics. In this paper, we use the averaging operator h�i D
h�ity´, which consists of averaging in time (over the time interval Œ0; 300�) and in the y- and
´- directions. Specifically, to compute hqity´ for a given quantity q, for each fixed point x,
we have

hqity´.x/ D
1

T Ly L´

X
t;y;´

q.x; y; ´; t/ ; (25)

where T is the total time length (i.e., T D 300),Ly is the dimension of the computational domain
in the y-direction, and L´ is the dimension of the computational domain in the ´-direction.
Because the topology of the velocity field is markedly different in the x-direction, y-direction,
and ´-direction, one could also consider spatial averaging in the x´-direction (h�i D h�itx´). We
note that, because the numerical results with spatial averaging in the x´-direction are qualita-
tively similar to those with spatial averaging in the y´-direction, they are not included in the
paper.
Energy Spectrum: All energy spectra are calculated from the average kinetic energy of the nodes
in the cube with side 0.1 centered at the probe .0:9992; 0:3575; 1:0625/.
Mean velocity components: The following mean velocity components are plotted: hui (the mean
streamwise velocity), hvi (the mean normal velocity), and hwi (the mean spanwise velocity).
Reynolds stresses: The following Reynolds stresses are plotted: hu � hui; v � hvii (the
xy-component of the Reynolds stress), hu � hui; w � hwii (the x´-component of the Reynolds
stress), and hv � hvi; w � hwii (the yz-component of the Reynolds stress).
RMS Values of Velocity Fluctuations: The following rms values of velocity fluctuations are plot-
ted: huirms D hu � hui; u � huii (the rms of the streamwise velocity fluctuations), hvirms D
hv�hvi; v�hvii (the rms of the normal velocity fluctuations), and hwirms D hw�hwi; w�hwii
(the rms of the spanwise velocity fluctuations).
Strouhal Number: The Strouhal number (St ) is computed as [44, 45]

St D
f D

U1
; (26)

where f is the shedding frequency, U1 is the streamwise velocity (i.e., the velocity at the inlet),
and D is the diameter of the cylinder. We compute the shedding frequency f as the frequency
corresponding to the first spike in the energy spectrum (see discussion on page 410 in [46]).
Because we have limited the scope of this paper to just velocity ROMs, we do not consider a
ROM representation of the pressure field. Hence, we do not calculate the lift and drag coefficient
spectra. We note, however, that pressure ROMs have been used with good success to calculate
quantities like the lift, drag coefficient, and equation residuals: see, e.g., [8, 16, 35, 47] for details
on these computations and further discussions of pressure ROMs.

Numerical Methods We investigate all ROMs in the numerical simulation of 3D flow past a cir-
cular cylinder at Re D 1000. The Reynolds number is computed using the diameter (D) of the
cylinder as the length scale and the freestream velocity (U1) as the velocity scale. The cylinder
is parallel to the ´-axis and the free-stream flow is in the positive x-direction. In this section, u
denotes the streamwise velocity component (associated with the x-axis), v denotes the normal
velocity component (associated with the y-axis), and w denotes the spanwise velocity compo-
nent (associated with the ´-axis). A parallel CFD solver is employed on the time interval Œ0; 300�
to generate the DNS data: the simulation uses a second-order finite volume method with a grid
consisting of 145� 193� 17 points. Further details on the numerical discretization are presented
in [44, 45, 48].

We obtain the POD basis by collecting 1000 snapshots of the velocity field (u; v;w) over the
time interval Œ0; 75� and applying the method of snapshots developed in [5]. These POD modes
are then interpolated onto a structured quadratic FE triangulation with nodes coinciding with
the nodes used in the original DNS finite difference discretization. The first r D 6 POD modes
capture 84% of the energy of the velocity fluctuations. We limit ourselves to a small number
of POD basis functions for the purpose of showing the effect of regularization when the ROM
cannot accurately describe all scales of motion, which is the case in many realistic applications.
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These modes are used in all ROMs. For all the ROMs, the time discretization employs the explicit
Euler method with �t D 7:5 � 10�4 and the spatial discretization uses piecewise quadratic
Lagrange FEs. For the time discretization, we carried out a temporal grid convergence study
and achieved qualitatively identical results. All the ROMs are investigated on the time interval
Œ0; 300�. We emphasize that the time interval over which the ROMs are tested (i.e., Œ0; 300�) is
four times longer than the time interval over which the snapshots were collected (i.e., Œ0; 75�).
Thus, the ROMs are used in a predictive regime.

Parameters The Reg-ROM results are plotted for the optimal values of ı (for L-ROM-DF and
EF-ROM-DF) and r1 (for L-ROM-Proj and EF-ROM-Proj). These optimal ı and r1 values are
determined by requiring that the Reg-ROMs have the time average of the L2-norm of the solu-
tion as close as possible to that of the DNS. To find the optimal ı value for L-ROM-DF and
EF-ROM-DF, the time averages of the L2-norms of the solutions of these Reg-ROMs are plotted
for 101 ı values in the interval Œ0; 75�. The intersection between the Reg-ROM and DNS curves
yields the optimal ı value. To find the optimal r1 value for the L-ROM-Proj and EF-ROM-Proj,
a similar approach is used. This time, however, because r1 takes integer values, only a relatively
low number of values is used in the optimization procedure. This approach yields the following
values for the optimal parameters: r1 D 1 for L-ROM-Proj, ı D 0:247 for L-ROM-DF, r1 D 4

for EF-ROM-Proj, and ı D 0:001367 for EF-ROM-DF. We emphasize that these parameter
values are optimal only on the short time interval tested (i.e., Œ0; 75�), and they might actually
be non-optimal on the entire time interval Œ0; 300� on which the Reg-ROMs are tested. This
heuristic procedure (fitting the parameter in each ROM across a short interval and then comparing
results across a much longer interval) provides some fairness in the comparison between different
ROMs. We believe that this procedure is fair because even though we use a calibration approach
to fit the parameters, we compare the models over much longer time intervals: this tests the
quality of the stabilized model itself instead of just the quality of the fit.

5.1. Numerical results

Before presenting the quantitative comparison of the ROMs, we give a flavor of the topology
of the resulting flow fields. In Figure 1, we plot seven isosurfaces of the velocity snapshots at
t D 142:5 s for DNS, G-ROM, L-ROM-Proj, L-ROM-DF, EF-ROM-Proj, and EF-ROM-DF. Tak-
ing the DNS results as a benchmark, the G-ROM, EF-ROM-Proj and L-ROM-Proj yield inaccurate
results, in the form of unphysical structures. The L-ROM-DF yields more accurate results. The most
accurate results, however, are produced by the EF-ROM-DF. Due to space limitations, only one
time instance snapshot is shown for the ROMs. The general behavior over the entire time interval
is similar.

In Figure 2, we plot the energy spectra of the four ROMs and, for comparison purposes, of the G-
ROM. The five energy spectra are compared with the DNS energy spectrum. The energy spectra of
the G-ROM and EF-ROM-Proj overestimate the energy spectrum of the DNS. The energy spectra
of the L-ROM-Proj and L-ROM-DF, on the other hand, underestimate the energy spectrum of the
DNS. The most accurate energy spectrum (i.e., the closest to the DNS energy spectrum) is clearly
that of the EF-ROM-DF.

In Figure 3, we plot the mean velocity components for different values of x. Figure 3 yields the
following conclusions: First, the mean streamwise velocity is computed accurately by all ROMs.
Second, the G-ROM and EF-ROM-Proj yield inaccurate results for the mean spanwise velocity; all
the other ROMs perform significantly better. Third, the EF-ROM-Proj yields inaccurate results for
the mean normal velocity; all the other ROMs perform significantly better.

In Figure 4, we plot the Reynolds stresses for different values of x. Figure 4 yields the following
conclusions: First, the EF-ROM-Proj and G-ROM Reynolds stresses are consistently the most inac-
curate (i.e., the farthest from the DNS Reynolds stresses). Second, the other ROMs have all similar
behaviors. Indeed, different ROMs might outperform the others over different spatial regions, but
there is no clear ‘winner’ over the entire spatial interval for any of the Reynolds stresses.

In Figure 5, we plot the rms values for different values of x. Figure 5 yields the following
conclusions: Similar to the Reynolds stresses case, the EF-ROM-Proj and G-ROM rms values of
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Figure 1. Snapshots of horizontal velocity at t D 142:5s for: the DNS (top, left); the G-ROM (top,
right); the L-ROM-Proj (middle, left); the L-ROM-DF (middle, right); the new EF-ROM-Proj (bottom, left);
and the new EF-ROM-DF (bottom, right). Seven isosurfaces are plotted. [Colour figure can be viewed at

wileyonlinelibrary.com]
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Figure 2. Kinetic energy spectrum of the DNS (blue) and the ROMs (red): (a) the G-ROM; (b) the L-ROM-
Proj; (c) the L-ROM-DF; (d) the EF-ROM-Proj; and (e) the EF-ROM-DF.
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Figure 3. Mean velocity components of DNS and ROMs: (a) hui (the mean streamwise velocity), (b) hvi
(the mean spanwise velocity), and (c) hwi (the mean normal velocity). [Colour figure can be viewed at

wileyonlinelibrary.com]
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Figure 4. Reynolds stresses of DNS and ROMs: (a) hu � hui ; v � hvii (the xy-component of the Reynolds
stress), (b) hu � hui ; w � hwii (the x´-component of the Reynolds stress), and (c) hv � hvi ; w � hwii (the

y´-component of the Reynolds stress). [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 5. Rms values of the velocity fluctuations of DNS and ROMs: (a) huirms D hu � hui ; u � huii
(the rms value of the streamwise velocity fluctuations), (b) hvirms D hv � hvi ; v � hvii (the rms value of
the spanwise velocity fluctuations), and (c) hwirms D hw � hwi ; w � hwii (the rms value of the normal

velocity fluctuations). [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 6. Time evolution of the POD basis coefficients a2 (left column) and a6 (right column) of the DNS
(red) and ROMs (black): the G-ROM (first row); the L-ROM-Proj (second row); the L-ROM-DF (third row);

the new EF-ROM-Proj (fourth row); and the new EF-ROM-DF (fifth row).
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the velocity fluctuations are consistently the most inaccurate (i.e., the farthest from the DNS rms
values). The rms plots corresponding to the other ROMs, however, display a consistent ordering this
time. Indeed, when the hvirms and hwirms plots are considered, the EF-ROM-DF is slightly bet-
ter than the L-ROM-DF. Furthermore, both are better than L-ROM-Proj. When the huirms plot is
considered, the EF-ROM-DF, L-ROM-DF and L-ROM-Proj perform similarly.

The time evolutions of the POD basis coefficients a2.�/ and a6.�/ on the entire time interval
Œ0; 300� are shown in Figure 6. We note that the other POD coefficients have a similar behavior.
Thus, for clarity of exposition, we include only a2.�/ and a6.�/. The EF-ROM-Proj and G-ROM’s
time evolutions of a2 and a6 are clearly inaccurate. Indeed, the magnitudes a2 and a6 are several
times larger than that of the DNS projection. The L-ROM-Proj and, to a smaller extent, L-ROM-DF
also yield inaccurate time evolutions of a2 and a6. This time, however, these ROMs’ POD coeffi-
cients seem to decrease as time increases. The EF-ROM-DF clearly yields the most accurate POD
coefficients.

The Strouhal numbers predicted by the ROMs and the DNS are listed in Table I. It is clear that the
EF-ROM-DF yields the most accurate prediction of the Strouhal number, whereas the EF-ROM-Proj
yields the most inaccurate prediction. Also note that the G-ROM fails to predict a clear shedding
frequency and, thus, cannot yield a Strouhal number.

A natural question, however, is whether the Reg-ROMs that we investigated are computationally
efficient, which is one of the main requirements for any successful ROM. The CPU times of all four
Reg-ROM/filter combinations and G-ROM are listed in Table II. The CPU time of the Reg-ROMs
is on the same order as the CPU time of the G-ROM. In [13], we showed that the CPU time of the
G-ROM (about 92 s in the online stage) is orders of magnitude lower than the CPU time of the DNS
(about 2:3 � 106 s). Thus, we conclude that the Reg-ROMs’ computational efficiency is extremely
high, similar to that of the G-ROM.

5.2. Summary and discussion

Table III displays the ranking of the four Reg-ROM/filter combinations (i.e., L-ROM-DF,
L-ROM-Proj, EF-ROM-DF and EF-ROM-Proj). The numbers in Table III represent the rank of the
Reg-ROM/filter combinations (with 1 the best and 4 the worst). We emphasize that the results in
Table III represent a general evaluation of the Reg-ROM/filter combinations for all criteria used. The
following overall rankings emerge: The EF-ROM-DF is the most accurate with respect to all the cri-
teria considered. Indeed, the EF-ROM-DF clearly yields (i) the best energy spectrum (see Figure 2);
(ii) the best rms values, although L-ROM-DF was a close second (see Figure 5); and (iii) clearly the
best time evolutions of the POD coefficients a2 and a6 (Figure 6). Furthermore, with respect to the

Table I. Strouhal numbers predicted by ROMs.

DNS G-ROM L-ROM-Proj L-ROM-DF EF-ROM-Proj EF-ROM-DF

St 0.2083 – 0.1855 0.1855 0.2474 0.1986

Table II. CPU times (in seconds) of the online stage of the ROMs.

G-ROM L-ROM-Proj L-ROM-DF EF-ROM-Proj EF-ROM-DF

92 103 104 114 101

Table III. Ranking of the L-ROM-DF, L-ROM-Proj, EF-ROM-
DF and EF-ROM-Proj.

L-ROM-DF L-ROM-Proj EF-ROM-DF EF-ROM-Proj

2 3 1 4
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other two criteria (the mean velocity components in Figure 3 and the Reynolds stresses in Figure 4),
the EF-ROM-DF performs at least as well as the other ROMs. Thus, we conclude that the EF-
ROM-DF yields the most accurate average and instantaneous numerical results. The EF-ROM-Proj
is consistently the least accurate. The L-ROM-DF and the L-ROM-Proj yield similar results, with an
advantage for the former. Besides the rankings, Table III suggests that the spatial filter has a higher
impact on the Reg-ROM than the regularization used. Indeed, the DF generally yields better results
than Proj for both the EF-ROM and L-ROM. We note that both the Leray and EF models are used in
standard CFD; see, e.g., [43] for an extensive discussion of these two regularized models. Both the
DF and Proj (which is called ‘sharp cut-off filter’) are also used in standard CFD (see, e.g., [38]).
To our knowledge, in standard CFD, there is no a priori reason to expect one model or filter to out-
perform the other. In our ROM context, we do not have an explanation for the improved accuracy of
the EF and DF combination either. Finally, it should be emphasized that EF-ROM-DF, L-ROM-DF
and L-ROM-Proj performed significantly better than the standard G-ROM, whereas EF-ROM-Proj
performed significantly worse than the G-ROM.

6. CONCLUSIONS AND FUTURE WORK

A new Reg-ROM was proposed: the EF-ROM. The L-ROM was also investigated. Both Reg-ROMs
used explicit POD spatial filtering to regularize (smooth) some of the terms in the standard G-ROM.
Two explicit ROM spatial filters were investigated: the Proj and the DF. To study the effect of
the ROM spatial filtering on the Reg-ROMs, four Reg-ROM/filter combinations were considered:
L-ROM-Proj, L-ROM-DF, EF-ROM-Proj and EF-ROM-DF. These four Reg-ROM/filter combina-
tions were assessed in the numerical simulation of the 3D flow past a circular cylinder atRe D 1000.
The Reg-ROM/filter combinations were tested with optimal values of ı (for the DF) and r1 (for
the Proj). These optimal values were determined by requiring that the DNS (benchmark) and Reg-
ROM/filter combinations be as close as possible on the average. We emphasize, however, that the
parameter values were optimized on a short time interval (Œ0; 75�), whereas the ROMs were inves-
tigated on a significantly longer time interval (Œ0; 300�). The following criteria were used in the
numerical assessment of the Reg-ROM/filter combinations: the kinetic energy spectrum, the mean
velocity, the Reynolds stresses, the root mean square values of the velocity fluctuations, the time
evolution of the POD coefficients, and the Strouhal number. The numerical investigation of the four
Reg-ROM/filter combinations yielded the following conclusions: (i) The EF-ROM-DF was clearly
the most accurate, the EF-ROM-Proj was the least accurate, and the L-ROM-DF was more accurate
than L-ROM-Proj. The EF-ROM-DF, L-ROM-DF and L-ROM-Proj performed significantly better
than the standard G-ROM. (ii) The explicit ROM spatial filter had a higher impact on the Reg-ROM
than the regularization used. Indeed, the DF generally yielded better results than Proj for both the
EF-ROM and L-ROM. (iii) The CPU times of all four Reg-ROM/filter combinations were orders of
magnitude lower than the CPU time of the DNS.

These first steps in the investigation of the new EF-ROM yielded encouraging results. There are,
however, several research directions that could be further pursued. For example, using an approach
similar to that utilized in [41] in a FE context could increase the EF-ROM accuracy by limit-
ing its numerical dissipation. Furthermore, although the same explicit Euler method was used in
all the ROMs (which ensured a fair comparison), one could investigate more accurate numerical
discretizations. One could also test the new EF-ROM in the numerical simulation of more com-
plex convection-dominated flows. The preprocessing spatial filtering in [25] should certainly be
used to eliminate the noise in the snapshots (which, of course, is to be expected for the relatively
coarse meshes utilized in complex applications). Although a necessary step in complex convection-
dominated flows, this preprocessing spatial filtering will probably be not sufficient for ROMs that
employ relatively few POD modes. In this case, one could investigate whether the new regularized
EF-ROM can further stabilize the numerical simulations and allow accurate approximations of com-
plex convection-dominated flows. One could also perform a comparison of the new EF-ROM with
other ROM stabilization strategies, such as those in [7, 13–19]. Of course, this would be a daunting
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task (which could possibly explain why it has not been performed so far); it would, however, provide
invaluable insight to anyone who intends to use ROMs in realistic turbulent flows. Finally, exten-
sions of the proposed ROMs to fully predictive applications and to compressible flows are open and
interesting problems, which should be investigated.
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