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INTRODUCTION

The following are general problems we would like to solve:

• Give necessary and sufficient conditions in certain family of
ring for totally refexive modules to exist.

• If we know totally reflexive modules exist, find a construc-
tion to build one, and if the ring is not Gorenstein, to build
infinitely many.

We provide partial answers to the first question for the class of
almost Gorenstein rings, as defined in [HV].

1. THE CANONICAL MODULE OVER ALMOST GORENSTEIN RINGS

Two versions of the almost Gorenstein property are proposed in
[HV]. In order to distinguish between them, we will refer to the
second version as strongly almost Gorenstein.

(1.1) Definition. An artinian local ring (R, m) is almost Gorenstein

if the inclusion 0 :R (0 : I) ⊆ (I :R m) holds for every ideal I ⊂ R.

(1.2) Definition. An artinian local ring R is strongly almost Goren-

stein if it has the property that ω∗
R(ωR) ⊇ m, where ωR denotes the

canonical module of R, and ω∗
R(ωR) = {y ∈ R | y = f(x) for x ∈

ωR and some f ∈ ω∗
R}.

It is shown in [HV] that strongly almost Gorenstein implies almost
Gorenstein. However, the two properties are not equivalent.

The class of Teter rings is a particular example of strongly almost
Gorenstein rings
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(1.3) Definition. We say that R is a Teter ring if there exists a local
artinian Gorenstein ring (S, mS) such that R = S/(δ)S , where (δ)S =
(0) :S mS

For any artinian ring R, one may assume, by the Cohen structure
theorem, that R is a quotient S/J where S is a Gorenstein artinian
ring. If S is a Gorenstein ring, then 0 :S (0 : I) = I for all ideals
I in S . Therefore without loss of generality we may assume that
J = 0 : K for some ideal K ⊆ S . Assume that K is generated by
f1, . . . fn.

(1.4) Lemma. Let S be a Gorenstein artinian ring and let K =
(f1, . . . , fn) be an ideal such that the ring R = S/(0 :S K) is almost
Gorenstein. Then the following equality holds:

mS = fi :S (f1, . . . , f̂i, . . . fn) + (f1, . . . , f̂i, . . . fn) :S fi.

Proof. Without loss of generality we may assume that i = 1. Let
I = (0 :S f1) and denote by J = (0 :S K). As J ⊆ I , then J :S
(J :S I) ⊂ I :S mS . For the first term of the equality, we have the
following equalities:

J :S (J :S I) = (0 :S K) :S (J :S I)

= (0 :S K(J :S I))

= (0 :S K[(0 :S K) :S I)])

= (0 :S K(0 :S KI))

= (0 :S (0 :S KI)) :S K

= KI :S K

For the rigth hand term of the equality:

I :S mS = (0 : f1) :S mS = 0 :S f1m.

So that KI :S K ⊆ 0 :S f1m. Using that S is Gorenstein, we have
(f1mS) = 0 :S (0 :S f1mS) ⊆ 0 :S (KI :S K). But

0 :S (KI :S K) = K(0 :S KI)

= K[(0 :S I) :S K]

= K(f1 :S K)

Putting all together we obtain that f1m ⊆ K(f1 :S K). In particular,
for every element x ∈ m we can write xf1 =

∑n
i=1 uifi, with ui ∈

(f1 :S K) and hence (x − u1)f1 =
∑n

i=2 u1fi. This implies that x −
u1 ∈ (f2, . . . , fn) :S f1 and finally x ∈ (f2, . . . , fn) :S f1 + f1 :S K =
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(f2, . . . , fn) :S (f1) + (f1) :S (f2, . . . , fn). As x is a random element in
the maximal ideal m, we have the thesis. �

(1.5) Theorem. Let (R, m, k) be a local noetherian ring which is
almost Gorenstein with canonical module ωR. Assume that R is not
Gorenstein and R = S/J , where S is an artinian Gorenstein ring,
and J :S m 6= mJ :S m. Then the residue field k is a direct summand
of the second syzygy of the canonical module ωR.

Proof. In the following, denote by y′ the image in R of the element
y ∈ S . Since S is Gorenstein, we may assume that J = (0 :S K), for
some ideal K = (f1, . . . , fn). The canonical module ωR is given by
HomS(R, S) = HomS(S/(0 : K), S) which is isomorphic to (0 : (0 :
K)) = K . Let

. . . // Rp
∂2

// Rm
∂1

// Rn
∂0

// K // 0

be a minimal presentation of the canonical module. By Lemma 1.4,
we can choose a set of minimal generators x1, . . . , xe of the maximal
ideal mS , such that xi ∈ f1 :S (f2, . . . fn) or xi ∈ (f2, . . . , fn) : f1. In
any case there is a relation a1if1+a2if2+· · ·+anifn = 0 in S , such that
either a1i = xi or a2i = xi. The column vectors D′

i = (a′
1i, . . . , a

′
ni)

are part of a minimal generating set for the first syzygy. After a
choice of basis, D′

1, . . . , D
′
e are the first e columns of the matrix

representing ∂1, let D′
e+1, . . . , D

′
m be the other columns. For every

u′ ∈ socle R the element (0, . . . , u′, . . . , 0) is in the kernel of ∂1. We
claim that there exists a u′ ∈ socle R such that u

′
1 = (u′, 0, . . . , 0) or

u
′
2 = (0, u′, 0, . . . , 0) is a minimal generator for the second syzygy of

E , if so then this shows that k is a direct summand of the second
syzygy.

To prove the claim, denote by B′ = (b′ij) the matrix representing
∂2. Let u′ ∈ socle R and assume that u

′
i is not part of a minimal set

of generators of the second syzygy. This implies that

ui = c1





b11
...

bm1



 + · · ·+ cp





b1p

...
bmp



 + JSm

where ci are elments of the maximal ideal mS . Moreover we have

b1iD1 + · · ·+ bmiDm ∈ JSn

for all i = 1, . . . , p. This implies that Du =
∑

cj(b1jD1 + · · · +
bmjDm) ∈ mJSn. This implies that for all u ∈ (J :S m) and for all
i = 1, . . . , e we have uxi ∈ mJ or (J :S m)m ⊂ mJ which contradicts
the assumtion (J :S m) 6= (mJ :S m). �
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2. ALMOST GORENSTEIN RINGS AND TOTALLY REFLEXIVE MODULES

(2.1) Lemma. Let (R, m, k) be a local ring with canonical module
ωR. If k is a direct summand of any syzygy of ωR then there are no
non-free totally reflexive modules.

Proof. Let X be a totally reflexive module, the equality
Ext1

R(X, M) = Exti+1
R (X, Ωi

RM) holds for every R-module M . In par-
ticular for M = ωR then Exti+1

R (X, Ωi
RωR) = 0 and Exti+1

R (X, k) = 0
if k is a direct summand of Ωi

R(ωR). This shows that X has finite
projective dimension and therefore it is free. �

(2.2) Remark. In [?] it is shown that if a local ring R can be written
as a quotient S/J such that dimk(J : m)/(mJ : m) ≥ 2 then there
are no totally reflexive modules. Theorem 1.5 shows that for al-
most Gorenstein rings the conclusion holds even in the case when
dimk(J : m)/(mJ : m) ≥ 1.

(2.3) Corollary. Let R be a Teter ring, then every totally reflexive
module is free.

Proof. Write R = S/δ where S is a Gorenstein artinian ring with
socle equal to δ. The condition (δ :S m) 6= (0 :S m) = δ holds,
therefore one can apply Theorem 1.5 and Lemma 2.1, �

(2.4) Example. The ring R = k[x, y, z]/(x2, y2, z2, yz) has totally
reflexive modules which are not free. On the other hand, let
S = k[x, y, z]/(x2, y2, z2) and J = (yz)S then (J :S mS) = (mSJ ; ms).
The ring R has gorenstein colength 2.

The following proof is an adaptation from [HV]

(2.5) Lemma. Let (R, m, k) be a Cohen-Macaulay ring such that
m Ext1

R(M, R) = 0 for all maximal Cohen-Macaulay module M .
Then R/xxx is an Almost Gorenstein ring for all system of param-
eters xxx.

Proof. Let I be any ideal of R containing the ideal generated by xxx.
We need to show that xxx :R (xxx :R I) ⊆ I :R m. Assume that I is
generated by f1, . . . , fn and consider the short exact sequence

0 →
R

xxx : I
→ ⊕

R

I
→ N → 0,

where the first map is given by u → (f1u, . . . , fnu). Applying the
functor HomR( , R/xxx) to the short exact sequence we obtain:

0 → HomR(N,
R

xxx
) → HomR(⊕

R

I
,
R

xxx
) → HomR(

R

xxx : I
,
R

xxx
) → Ext1

R(N,
R

xxx
).
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The cokernel of the middle map is the cokernel of:

⊕
xxx :R I

xxx
→

xxx :R (xxx :R I)

xxx

given by (u1, . . . , un) → f1u1 + · · ·+ fnun. The cokernel is there-
fore isomorphic to xxx:R(xxx:RI)

I
and embeds in Ext1

R(N, R/xxx). This
last module is isomorphic to Extd+1

R (N, R) which is isomorphic to
Ext1

R(Ωd(N), R) and therefore annihaleted by m. This implies that
m

xxx:R(xxx:RI)
xxx

= 0 and therefore the thesis. �

(2.6) Remark. In [AGP], Theorem 3.1, the authors prove that if
(R, m, k) is a local ring and yyy = y1, . . . , yd is a regular sequence
in m

2 then R/yyy has a totally reflexive module.

(2.7) Remark. Let (R, m, k) be a local ring. Let M be a finitely
generated R-module. For every element x of the maximal ideal,
denote by µx the multiplication by x. If for every x in a minimal
set of generators of m there exists a linear map φx such that the
daigram:

0 // Ω1(M)

µx

��

// F //

φx
||yy

y
y
y
y
y
y
y

M // 0

0 // Ω1(M) // F // M // 0

commutes, then m Ext1
R(M, N) = 0 for all modules N .

(2.8) Example. In this example we show that there exists an almost
gorenstein ring that admits a totally reflexive module. The ring R =
C[[x, y, z, u, v]]/(xz−y2, xv−yu, yv−zy) is of finite Cohen Macaulay
type and its only indecomposable maximal Cohen-Macaulay mod-
ules are R, the ideals α = (x, y), α2 = (x2, y2, xy), β = (x, y, u) and
the R-module Ω1

R(β). For a proof of this see for example [?]. In
the following we show that the maximal ideal m annihalets all the
R-modules Ext1

R(M, R) for M maximal Cohen-Macaulay. We first
show that m Ext1

R(α, Ω1(α)) = 0 = m Ext1
R(β, Ω1(β)).

(1) For the ideal α, the first syzygy Ω1
R(α) is generated by

[−v, u], [−z, y], [−y, x].

The following list gives the maps of Remark 2.7
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φx =

(

y z − y
−x −y + x

)

φy =

(

−y 0
x 0

)

φz =

(

z 0
−y 0

)

φv =

(

v − y −z
−u + x y

)

φu =

(

y 0
−u 0

)

(2) For the ideal β , the first syzygy Ω1
R(β) is generated by

[0,−v, z], [−v, u, 0], [−v, 0, y], [−u, 0, x], [−z, y, 0], [−y, x, 0].

The following list gives the maps of Remark 2.7

φx =





0 −y −u
0 x 0
0 0 x



 φy =





0 −z −v
0 y 0
0 0 y





φz =





z 0 0
−y 0 −v
0 0 z



 φv =





v 0 0
0 v 0
−y −z 0





φu =





u 0 0
0 u 0
−x −y 0





By [?], there exists a short exact sequence 0 → R → α ⊕ α ⊕ β →
Ω1

R(β) → 0. By applying the functor HomR(−, N) we can see that
Ext1

R(Ω1
R(β), N) is annihilated by the maximal ideal m for every R-

module N . All it is left to show is that m Ext1
R(α2, R) = 0, which can

be checked using Macaulay 2. The conclusion follows from Lemma
2.5 and Remark 2.6.

3. THE MONOMIAL CASE

The main result of this section deals with artinian strongly al-
most Gorenstein rings which are obtained as quotients of polyno-
mial rings by monomial ideals.

(3.1) Theorem. Let S = k[x1, . . . , xd]/(xA1

1 , . . . , xAd

d ), and let f1, . . . , fn

be monomials in S such that

(1) fi does not divide fj for every i 6= j;
(2) xi divides fj for all i = 1, . . . , d and for all j = 1, . . . n;
(3) (x1, . . . , xu) ⊆

∑n

i=1 fi :S (f1, . . . , fn).

then, one of the following holds:
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(A) There exists an integer i ∈ {1, . . . , n} and an integer j ∈
{1, . . . , u} such that

fi

xj

∈ (f1, . . . , fn) : (x1, . . . , xu);

(B) There exists a partition S1 ∪ · · · ∪ Sn of {1, . . . , u} such that
for evey integer i ∈ {1, . . . , n} one has xjfi = 0 for every
j ∈ {1, . . . , u} \ Si and xjfi 6= 0 for all j ∈ Si.

Note that if R = S/0 :S (f1, . . . , fn) is strongly almost Gorenstein,
then (2) above holds by [HV]. We may assume without loss of gener-
ality that (1) and (3) also hold. Indeed, note that R does not change
if we replace S by S ′ = k[x1, . . . , xd]/(xA1+1

1 , . . . , xAd

d ), and f1, . . . , fn

by f ′
1, . . . , f

′
n, where f ′

i = (x1 · · ·xd)fi.

Proof. Before we proceede with the proof, we establish some
claims that we will use later. Write each fi = Πn

i=1x
Nji

i .

Claim 1: If xifj ∈ (fk), for some integers i, j, k then one of the
following cases hold:

(i)

{

Nji = Nki − 1

Njl ≥ Nkl, for every l 6= i

(ii) Nji = Aj − 1

Moreover, the first case holds for just one index i.
Indeed, assume that the second possibility does not hold then

Nji + 1 ≥ Nki and Njl ≥ Nkl for every l 6= i. If Nji + 1 > Nki then
Njl ≥ Nkl for every l ∈ {1, . . . , n} which implies that fk divides fi,
contradicting the hyphotesis. For the last statement, assume that
there are two indeces i1 and i2 such that

{

Nji1 = Nki1 − 1

Njl ≥ Nkl, for every l 6= i1

and
{

Nji2 = Nki2 − 1

Njl ≥ Nkl, for every l 6= i2

then, Nki2 − 1 = Nji2 ≥ Nki2 which is a contradiction.

Claim 2: If conclusion B holds then we may assume the following:

(i) each set Si has cardinality bigger than 2;
(ii) for every k ∈ Si we have xk ∈ (fi) : (f1, . . . , fn).
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Indeed assume that there exist indeces i and k such that Si = {xk},
then case (A) holds as fi

xk
∈ (fi) : (f1, . . . , fn). For (ii), let k ∈ Si. Note

that by hyphotesis (3) we have xk ∈ (fj) : (f1, . . . , fn) for some j 6= i.
Then xkfi ∈ (fj). As we may assume (i), there exists an l ∈ Si such
that l 6= k. For such an index we have Nil ≥ Njl. As the Si for a
partition of the variables {x1, . . . xu}, xl /∈ Sj and therefore xlfj = 0
which implies that Njl = Aj−1 and therefore Nil = Aj−1. It follows
that xlfi = 0 which is a contradiction as B holds and xk ∈ Si. We
will assume (i) and (ii) everytime we assume that B holds.

The proof of the theorem goes by induction on the number of
variables d, the case d = 1 being obviously true. Assume that the
theorem holds for d − 1 variables. We now induct on the number
of polynomials. For n = 2, 3 the theorem is settle by. Assume that
the theorem holds in the case of n − 1 polynomials.

Claim 3: Assume that conclusion B holds for f1, . . . , fn−1 with re-
spect of a set of variables x1, . . . , xs, with s ≤ u. Then, one has
Nnk = Nik − 1 and Nnl ≥ Nil, for all l 6= k, for at most just one i and
k.
proof of Claim 3: Assume that conclusion (B) holds for f1, . . . , fn−1.
Therefore there is a partition

S ′
1 ∪ · · · ∪ S ′

n−1 = {1, . . . , s}(3.1.1)

such that xkfi 6= 0 for all k ∈ Si and xkfi = 0 for all k /∈ Si. By Claim
2, for every k ∈ Si, xk ∈ (fi) : (f1, . . . , fn−1). By hypothesis xk ∈ (fj) :
(f1, . . . , fn), for some j and therefore xk ∈ (fj) : (f1, . . . , fn−1). Since
B holds and 3.1.1 is a partition, we have j = i. It follows that for
every k ∈ Si, xkfn ∈ (fi), and therefore the equations of Claim 1
hold. Note that one has Nnk = Nik − 1 and Nnl ≥ Nil, for all l 6= k,
for just one i and k. For if xk1

fn ∈ (fi1) and xk2
fn ∈ (fi2) with

xk1
fn 6= 0 6= xk2

fn. If i1 = i2 then this follows from Claim 1. Assume
that i1 6= i2 and for example that Nnk1

= Ni1k1
− 1, and Nnl ≥ Ni2k2

.
Since (B) holds then xk1

fi2 = 0 which implies that xk1
fn = 0 and

Nnk1
= Ak1

− 1. Finally, Nnk1
+ 1 = Ni1k1

= Ak1
, which is absurd as

every variable divides the monomials fl.
Claim 4: For every i ∈ {1, . . . , n} the following holds

(x1, . . . , xu) 6⊆
∑

l 6=i

(fl) : (f1, . . . , fn).

Assume, by way of contradiction, that (x1, . . . , xu) ⊆
∑n−2

i=1 fi :
(f1, . . . , fn−1) then conditions 1,2,3 of the theorem are satisfied and
by the induction hyphothesis either A of B holds. If (A) holds for
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the monomials f1, . . . , fn−1 then it holds for f1, . . . , fn. If B holds
then, by claim 3 with s = u, one has xkfn = 0 for every k but one,
say l. For such integer we have

fn

xl

∈ (f1, . . . , fn) : (x1, . . . , xu).

Because of Claim 4, by renaming the variables we may assume
that

x1, . . . , xs /∈ (fn) : (f1, . . . , fn−1, fn)(3.1.2)

xs+1, . . . , xu ∈ (fn) : (f1, . . . , fn−1, fn)(3.1.3)

We apply the induction hypothesis to the monomials f1, . . . , fn−1

with respect to the variables x1, . . . , xs.
Assume that conclusion B holds, by Claim 3, we have

xkfn = 0, for all but possibly one k ∈ {1, . . . , s}.(3.1.4)

We now prove that xl ∈ (fn) : (f1, . . . , fn−1) for all s + 1 ≤ l ≤ u,
and 3.1.4 imply

xlf1 = . . . xlfn−1 = 0, for all s + 1 ≤ l ≤ u.(3.1.5)

Indeed, assume by way of contradiction that there exists a j such that
xjfi 6= 0 for some j ≥ s+1 and some i ≤ n−1, then 0 6= xjfi ∈ (fn).
Equation 3.1.4 implies that xlfi = 0 for all l ≤ s, but at most one. But
this contradicts the fact that we are assuming conclusion B and that
the set S ′

i has cardinality bigger then two and that for every j ∈ S ′
i,

xjfi 6= 0.
Equations 3.1.4 implies two possibilities:

(1) there exists an integer k, 1 ≤ k ≤ s, such that xkfn 6= 0. If
this is the case then we have xlfn = 0. For if xkfn ∈ (fi) for
k ∈ Si, with i ≤ n− 1 and xlxkfn ∈ (xlfi) = 0, by 3.1.5. In this
case conclusion A holds as we have

fn

xk

∈ (f1, . . . , fn) : (x1, . . . , xu).

(2) xkfn0 for all 1 ≤ k ≤ s. In this case conclusion B holds with
th partition Si = S ′

i and Sn = {1, . . . , s}.

Assume conclusion A holds for {f1, . . . , fn−1} with respect to the
variables {x1, . . . xs}. Withou loss of generality, we may assume that

f1

x1

∈ (f1, f2, . . . fn−1).
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If we had

xl

f1

x1
∈ (fn), for every s + 1 ≤ l ≤ u,(3.1.6)

then conclusion A would hold for the original set of monomials
{f1, . . . , fn}. As xlf1 ∈ (fn) for all s + 1 ≤ l ≤ u, f xlf1 = 0 for all
s + 1 ≤ l ≤ u, or N11 > Nn1 then equations 3.1.6 hold. Without loss
of generality we may assume that

N11 ≤ Nn1(3.1.7)

and xlf1 6= 0 for some s + 1 ≤ l ≤ u. By Claim 1, there exists just
one value of l, say s + 1 such that xlf1 6= 0, as xlf1 ∈ (fn). So we
may assume

xs+1f1 6= 0, with N11 = Nn1 and xlf1 = 0, for all s + 2 ≤ l ≤ u(3.1.8)

Claim 5: The following holds:

x2f1 = . . . xsf1 = 0(3.1.9)

If, say, x2f1 6= 0, then 0 6= x2
f1

x1

∈ (fi) for some i ≤ n − 1, which
implies that N11 > Ni1. As, by assumptions, xs+1fi ∈ (fn) then we
obtain the two following possibilities:

(1) either xs+1fi = 0, which implies xs+1f1 = 0, contradiction
3.1.8; or

(2) Ni1 ≥ Nn1, which implies N11 > Nn1, contradictiong 3.1.7.

This proves claim 5.
Because of Claim 4, there exists an index j , such that 1 ≤ j ≤ s

and

xj ∈ (f1) : (f2, . . . , fn)(3.1.10)

We may assume that

x1f1 6= 0, and therefore x1fn 6= 0(3.1.11)

otherwise, by 3.1.8 and 3.1.9, xlf1 = 0 for all l ∈ {1, . . . , s, s+2, . . . , u}.
It follows that condition A holds:

f1

xs+1
∈ (f1, . . . , fn) : (x1, . . . , xu).

The following cases finish the proof of the theorem.

(1) Assume j = 1. Since x1fn ∈ (f1) and N11 = Nn1, by 3.1.8, then
x1fn = 0 contradicting 3.1.11.

(2) Assume j ≥ 2. We may assume j = 2. By 3.1.8 and 3.1.9
we have xlf1 = 0 for all l 6= 1, s + 1. We may assume that
x1f1 6= 0, by 3.1.11.
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(a) Assume that x2fn 6= 0. Since x1 ∈ (fi) : (f1, . . . , fn) for
some i ∈ {1, . . . , n − 1}. As 0 6= x2fn ∈ (f1) and x1fn 6= 0,
by Claim (1) we need to have 2 ≤ i ≤ n− 1. For such an
i, we claim that

fi

x1
∈ (f1, . . . , fn) : (x1, . . . , xu).(3.1.12)

First notice that Ni1 = Nn1 +1 = N11 +1, since 0 6= x1fn ∈
(fi) and by 3.1.7. Moreover, as x2fn 6= 0, by multiplying
x1fn by x2 we obtain that 0 6= x2fi ∈ (f1). If xlfi 6= 0 for
l 6= 1, 2, s + 1, then xlf1 6= 0, contradicting 3.1.7 and 3.1.8.
As xs+1 ∈ fn : (f1, . . . , fn), we obtain xs+1fi ∈ (fn) and
since Ni1Nn1 + 1 also xs+1

fi

x1

∈ (fn).
(b) Assume that x2fn = 0. If x2fi = 0, for all i ∈ {1, . . . , u}

then we can ignore the variable x2 and the conclusion of
the theorem will hold by induction. So we may assum
that there is a t 6= 1, n such that x2ft 6= 0 and x2ft ∈
(f1). Therefore N12 = Nt2 + 1. As xlft ∈ fn for every
s + 1 ≤ l ≤ u, if xlft 6= 0 then A2 − 1 = Nn2 ≤ Nt2 which
implies that N12 = A2 which is a contradiction as all the
variables divide all the monomials. Therefore we have
that xlft = 0 for all s+1 ≤ t ≤ u. Also, as 0 6= x2ft ∈ (f1),
we have Ntk ≥ N1k . As xlf1 = 0 for all l 6= 1, s + 1, it
follows that xlft = 0 for all l 6= 1, 2. If also x1ft = 0 then
conclusion A holds as

ft

x2

∈ (f1, . . . , fn) : (x1, . . . , xu).

Assume that x1ft 6= 0. Since x1 ∈ (fi) : (f1, . . . , fn) for
some i. As 1 < s, i 6= n. We claim that

fi

x1

∈ (f1, . . . , fn) : (x1, . . . , xu).

AS 0 6= x1ft ∈ (fi), we have Nil ≥ Ntl for all l 6= 1.
As x2ft 6= 0 this implies that x2fi 6= 0. As x2fi ∈ (f1),
since xlf1 = 0 for l 6= 1, s + 1, we obtain that xlfi = 0
for l 6= 1, 2, s + 1. To prove the claim, it is therefore
enough to prove that fi

x1

x2 ∈ (f1) and fi

x1

xs+1 ∈ (fn). As
0 6= x1f1 ∈ (fi) we obtain Ni1 = N11 + 1 = Nn1 + 1, where
the last equality follows from 3.1.8. This together with
the fact that x2fi ∈ (f1) and xs+1fi ∈ (fn) concludes the
claim.

�
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(3.2) Corollary. Let S = k[x1, . . . , xd]/(xA1

1 , . . . , xAd

d ), and let
f1, . . . , fn be monomials in S such that R = S/0 :S (f1, . . . , fn) is
strongly almost Gorenstein. Then R does not admit non-free totally
reflexive modules.

Proof. As noted immediately after the statement of Theorem ??, the
strongly amost Gorenstein assumption means that we can apply
Theorem ??. If (A) holds, then Theorem 1.5 can be applied to show
that k is a direct summand of the second syzygy of ωR, and the
conclusion follows from Lemma 2.1.

If (B) holds, it is easy to check that k is a direct summand of the
first syzygy of ωR, and again the conclusion follows from Lemma 2.1.
Indeed, note that

(xA1

1 , xA2

2 , . . . , xAd

d ) : (f1, . . . , fn) = (xA1

1 , xA2

2 , . . . , xAd

d )+

(xjxj′ | xj and xj′ do not belong to the same Si).

The relations on the generators f1, . . . , fn of ωR are xjfi = 0

for j /∈ Si, and (Πj∈Si
x

Aj−1
j )fi − (Πj∈Si′

x
Aj−1
j )fi′ = 0. Note that the

latter relations are killed by the maximal ideal, thus each of them
generates a copy of k which splits off the first syzygy. �
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