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ABSTRACT. This is a preliminary version.

INTRODUCTION

The following are general problems we would like to solve:

e Give necessary and sufficient conditions in certain family of
ring for totally refexive modules to exist.

o If we know totally reflexive modules exist, find a construc-
tion to build one, and if the ring is not Gorenstein, to build
infinitely many.

We provide partial answers to the first question for the class of
almost Gorenstein rings, as defined in [HV].

1. THE CANONICAL MODULE OVER ALMOST GORENSTEIN RINGS

Two versions of the almost Gorenstein property are proposed in
[HV]. In order to distinguish between them, we will refer to the
second version as strongly almost Gorenstein.

(1.1) Definition. An artinian local ring (R, m) is almost Gorenstein
if the inclusion 0 :z (0: 1) C (I :g m) holds for every ideal I C R.

(1.2) Definition. An artinian local ring R is strongly almost Goren-
stein if it has the property that wj,(wg) 2 m, where wgr denotes the
canonical module of R, and wj(wg) = {y € R|y = f(x) forz €
wpr and some f € wy}.

It is shown in [HV] that strongly almost Gorenstein implies almost
Gorenstein. However, the two properties are not equivalent.

The class of Teter rings is a particular example of strongly almost
Gorenstein rings
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(1.3) Definition. We say that R is a Teter ring if there exists a local
artinian Gorenstein ring (S, mg) such that R = S/(6)S, where (§)S =
(0) s Mg

For any artinian ring R, one may assume, by the Cohen structure
theorem, that R is a quotient S/.J where S is a Gorenstein artinian
ring. If S is a Gorenstein ring, then 0 :s (0 : I) = I for all ideals
I in S. Therefore without loss of generality we may assume that
J =0 : K for some ideal K C S. Assume that K is generated by

fi,- o fa

(1.4) Lemma. Let S be a Gorenstein artinian ring and let K =
(fi,-.., fn) be an ideal such that the ring R = S/(0 :s K) is almost
Gorenstein. Then the following equality holds:

A~ ~

mg = fiis (froo s foroo o o) ¥ (frooo o fis oo f) is i

Proof. Without loss of generality we may assume that ¢ = 1. Let
I = (0 :s f1) and denote by J = (0 :3 K). As J C [, then J g
(J :s I) C I :g mg. For the first term of the equality, we have the
following equalities:

J:S (J:SI)

For the rigth hand term of the equality:
I:smg=(0:f1):smg=0: fim.
So that KI :s K C 0 :5 fim. Using that S is Gorenstein, we have
(fimg) =0:5 (0:5 fimg) C0:5 (KI:5 K). But
0:5 (KI:sK) = K(0:5KI)

= K[(0:51):5 K]

= K(fi:s K)
Putting all together we obtain that fim C K(f; :s¢ K). In particular,
for every element r € m we can write zf; = > u;f;, with u; €
(fi :s K) and hence (z —u1)fi = >, uifi. This implies that = —
ur € (fo, ... fn) s frand finally x € (fo, ..., fn) s i+ f1 s K =
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(fay -y fn) s (f1)+ (f1) s (f2, .-, fn). As z is a random element in
the maximal ideal m, we have the thesis. O

(1.5) Theorem. Let (R,m,k) be a local noetherian ring which is
almost Gorenstein with canonical module wg. Assume that R is not
Gorenstein and R = S/J, where S is an artinian Gorenstein ring,
and J :g m # mJ :g m. Then the residue field k is a direct summand
of the second syzygy of the canonical module wg.

Proof. In the following, denote by ¢’ the image in R of the element
y € S. Since S is Gorenstein, we may assume that J = (0 :5 K), for
some ideal K = (fi,..., fn). The canonical module wg is given by
Homg(R, S) = Homg(S/(0 : K),S) which is isomorphic to (0 : (0 :
K)) =K. Let
02 0 9o
RP R™ R" K 0

be a minimal presentation of the canonical module. By Lemma [1.4]
we can choose a set of minimal generators x4, ..., z, of the maximal
ideal mg, such that z; € f1 :s (fo,... fn) O z; € (fo,..., fn) : f1- In
any case there is a relation ay; fi+ao; fo+- - -+a,; f, = 0in S, such that

either ay; = z; or ay; = x;. The column vectors D, = (d);,...,al,)

are part of a minimal generating set for the first syzygy. After a
choice of basis, D},..., D, are the first e columns of the matrix
representing 0y, let D.,,..., D be the other columns. For every
u’ € socle R the element (0,...,4,...,0) is in the kernel of 9;. We
claim that there exists a v’ € socle R such that u}j = (¢/,0,...,0) or
u, = (0,4/,0,...,0) is a minimal generator for the second syzygy of
E, if so then this shows that k is a direct summand of the second
SYZygy.

To prove the claim, denote by B’ = (;) the matrix representing
0,. Let ' € socle R and assume that u] is not part of a minimal set
of generators of the second syzygy. This implies that

bui bip
u; = : +-t0g : + JS™

bml bmp

where ¢; are elments of the maximal ideal mg. Moreover we have

for all ¢+ = 1,...,p. This implies that Du = > ¢;(by;D; + -+ +
bimjDm) € mJS™. This implies that for all v € (J :¢ m) and for all
i=1,...,e we have uzr, € mJ or (J :¢ m)m C m.J which contradicts
the assumtion (J :g m) # (mJ :g m). O
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2. ALMOST GORENSTEIN RINGS AND TOTALLY REELEXIVE MODULES

(21) Lemma. Let (R, m, k) be a local ring with canonical module
wg. If k is a direct summand of any syzygy of wg then there are no
non-free totally reflexive modules.

Proof. Let X be a totally reflexive module, the equality
Extp(X, M) = Ext(X, Q% M) holds for every R-module M. In par-
ticular for M = wg then ExtZ (X, Qhwg) = 0 and ExtZ'(X, k) = 0
if k is a direct summand of Q%(wg). This shows that X has finite
projective dimension and therefore it is free. O

(2.2) Remark. In [?] it is shown that if a local ring R can be written
as a quotient S/J such that dimy(J : m)/(mJ : m) > 2 then there
are no totally reflexive modules. Theorem shows that for al-
most Gorenstein rings the conclusion holds even in the case when
dimy(J :m)/(mJ :m) > 1.

(2.3) Corollary. Let R be a Teter ring, then every totally reflexive
module is free.

Proof. Write R = S/§ where S is a Gorenstein artinian ring with
socle equal to 4. The condition (§ :¢ m) # (0 :g m) = J holds,
therefore one can apply Theorem [L.5 and Lemma 2.1] O

(2.4) Example. The ring R = k|z,y,2]/(2? 3% 2%, yz) has totally
reflexive modules which are not free. On the other hand, let
S = K[z, y,2]/(z% % 2%) and J = (yz)S then (J :5 mg) = (mgJ;my).
The ring R has gorenstein colength 2.

The following proof is an adaptation from [HV]

(25) Lemma. Let (R,m,k) be a Cohen-Macaulay ring such that
mExty(M,R) = 0 for all maximal Cohen-Macaulay module M.
Then R/z is an Almost Gorenstein ring for all system of param-
eters x.

Proof. Let I be any ideal of R containing the ideal generated by z.
We need to show that 1z (z :g I) C I :g m. Assume that [ is
generated by fi,..., f, and consider the short exact sequence

00— % — @? — N — 0,
where the first map is given by @ — (fiu,..., fyu). Applying the
functor Hompg( , R/z) to the short exact sequence we obtain:

R R R R R R
0 — HOHIR(N, ;) — HO].’I].R(@T, ;) — HOD’IR(F, ;) — EXt}%(N, ;)
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The cokernel of the middle map is the cokernel of:

:I::R[ (L'IR(IL'ZRI)
H
T T

given by (@y,...,a,) — fiug +---+ fau,. The cokernel is there-
fore isomorphic to M and embeds in Exth(N,R/z). This
last module is isomorphic to Ext% (N, R) which is isomorphic to
Extp(Q4(N), R) and therefore annihaleted by m. This implies that

m% = 0 and therefore the thesis. dJ

(2.6) Remark. In [AGP|, Theorem 3.1, the authors prove that if
(R,m, k) is a local ring and y = y1,...,y4 is a regular sequence
in m? then R/y has a totally reflexive module.

(2.7) Remark. Let (R,m, k) be a local ring. Let M be a finitely
generated R-module. For every element z of the maximal ideal,
denote by u, the multiplication by z. If for every z in a minimal
set of generators of m there exists a linear map ¢, such that the
daigram:

0—— QY(M) F M 0

0—— QY (M) F M 0

commutes, then m Extp(M, N) = 0 for all modules N.

(2.8) Example. In this example we show that there exists an almost
gorenstein ring that admits a totally reflexive module. The ring R =
Cllx,y, 2, u, v]]/(xz — y?, xv —yu, yv — zy) is of finite Cohen Macaulay
type and its only indecomposable maximal Cohen-Macaulay mod-
ules are R, the ideals a = (z,y), o® = (2%,y* zy), 8 = (z,y,u) and
the R-module QL(3). For a proof of this see for example [?]. In
the following we show that the maximal ideal m annihalets all the
R-modules Exty(M, R) for M maximal Cohen-Macaulay. We first
show that m Ext},(a, Q'(a)) = 0 = m Exth(3, Q'(3)).

(1) For the ideal q, the first syzygy Qk(«) is generated by

[_U> u]’ [_Za y]’ [—y, :L’]

The following list gives the maps of Remark
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(v -y _(—y O
O = —x —y+a:) Oy = x 0)
(2 0 _(v—y -z
¢z = —y O) Pv = —u—+x y)
(v O
(2) For the ideal 3, the first syzygy QL(3) is generated by

0, —v, 2], [-v,u, 0], [—v,0,y], [-u, 0, 2], [-2,v,0], [y, x,0].

The following list gives the maps of Remark [2.7]

0 —y —u 0 —2 —v
o.=10 2« 0 o,=10 wy O
0 0 = 0 0 wy
z 0 0 v 0 0
¢.=|-y 0 —v Gy = 0 v 0
0 0 =z -y —z 0
v 0 0
=10 wu O
—x —y 0

By [?], there exists a short exact sequence 0 - R - a®a® [ —
QL(B8) — 0. By applying the functor Hompg(—, N) we can see that
Exth(2%(8), N) is annihilated by the maximal ideal m for every R-
module N. All it is left to show is that m Ext},(a?, R) = 0, which can
be checked using Macaulay 2. The conclusion follows from Lemma
and Remark

3. THE MONOMIAL CASE

The main result of this section deals with artinian strongly al-
most Gorenstein rings which are obtained as quotients of polyno-
mial rings by monomial ideals.

(3.1) Theorem. Let S = k[zy,...,zq/(zi, ... 27%), and let f1,. .., f,
be monomials in S such that

(1) f; does not divide f; for every i # j;
(2) z; divides f; forall i =1,...,dand forall j =1,...n;
(3) (z1,. -y wu) SO0 fits (frse s fu):

then, one of the following holds:
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(A) There exists an integer ¢ € {1,...,n} and an integer j €
{1,...,u} such that
fi : .
,j(,’_ - (fl,...,fn) : (xl,...,xu),

(B) There exists a partition S; U---U S, of {1,...,u} such that
for evey integer i € {1,...,n} one has z,f; = 0 for every
jed{l,...,u}\ S;and z;f; # 0 forall j € S;.

Note that if R = S/0:5 (f1,..., fn) is strongly almost Gorenstein,
then (2) above holds by [HV]. We may assume without loss of gener-
ality that (1) and (3) also hold. Indeed, note that R does not change
if we replace S by " = k[xy,...,zq/(x" .. 2d), and fi, ..., fa
by fi,...,f), where f/ = (x1---x4)fi

Proof. Before we proceede with the proof, we establish some

claims that we will use later. Write each f; = II"_ 2",

Claim 1: If z;f; € (fi), for some integers i, j, k then one of the
following cases hold:
Nj; > Ny, forevery [#1
(i) Njy = A, — 1
Moreover, the first case holds for just one index i.

Indeed, assume that the second possibility does not hold then
Nji+1> Ni; and Nj > Ny, for every [ # . If N;; +1 > Ny, then
Nj; > Ny for every | € {1,...,n} which implies that f; divides f;,
contradicting the hyphotesis. For the last statement, assume that
there are two indeces 7; and i, such that

Nji1 - Nkil — 1
Nj; > Ny, forevery [ #14

and
Njiz - Nkiz - 1
Nj; > Ny, forevery [ # iy

then, Ny, — 1 = Nj;, > Ny, which is a contradiction.

Claim 2: If conclusion B holds then we may assume the following:

(i) each set S; has cardinality bigger than 2;
(ii) for every k € S; we have x € (fi) : (f1,---, fn)-
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Indeed assume that there exist indeces i and k such that S; = {z},
then case (A) holds as wi; e (f): (fi,..., fn). For (i), let k € S;. Note
that by hyphotesis (3) we have x; € (f;) : (f1,..., fn) for some j #i.
Then z f; € (f;). As we may assume (i), there exists an [ € S; such
that [ # k. For such an index we have N;; > Nj;. As the S; for a
partition of the variables {z1,...z,}, x; ¢ S; and therefore z;f; = 0
which implies that N;; = A; —1 and therefore N; = A;—1. It follows
that x;f; = 0 which is a contradiction as B holds and z; € 5;. We
will assume (i) and (ii) everytime we assume that B holds.

The proof of the theorem goes by induction on the number of
variables d, the case d = 1 being obviously true. Assume that the
theorem holds for d — 1 variables. We now induct on the number
of polynomials. For n = 2,3 the theorem is settle by. Assume that
the theorem holds in the case of n — 1 polynomials.

Claim 3: Assume that conclusion B holds for fi,..., f,_1 with re-
spect of a set of variables xy,...,x,, with s < u. Then, one has
Npx = Nix — 1 and N,,; > Ny, for all [ # k, for at most just one ¢ and
k.

proof of Claim 3. Assume that conclusion (B) holds for fi,..., f._1.
Therefore there is a partition
(3.1.1) StU---us ={1,...,s}

such that z; f; # 0 forall k € S; and z f; = 0 for all k£ ¢ S;. By Claim
2, forevery k € S;, xi € (fi) : (f1,--., fa1)- By hypothesis z;, € (f;) :
(fi,-.., fn) for some j and therefore x4 € (f;) : (f1,-.., fu—1). Since
B holds and [31.1] is a partition, we have j = i. It follows that for
every k € S;, xif, € (fi), and therefore the equations of Claim 1
hold. Note that one has N,, = N;z; — 1 and N,; > Ny, for all [ # k,
for just one i and k. For if xy, f, € (fi,) and zy, f, € (fi,) with
Ty fn £ 0 # g, fr I 43 = 45 then this follows from Claim 1. Assume
that i, # iy and for example that N,x, = Nyx, — 1, and N,y > Nig,.
Since (B) holds then zy, f;, = 0 which implies that =, f, = 0 and
Npg, = A, — 1. Finally, Nk, + 1 = Ny, = Ag,, which is absurd as
every variable divides the monomials f;.

Claim 4: For every i € {1,...,n} the following holds

(@1, ) Y (f): (froe s fo):

I£i
Assume, by way of contradiction, that (zi,...,2,) C Z;:f fi -
(f1,.-., fa_1) then conditions 1,2,3 of the theorem are satisfied and

by the induction hyphothesis either A of B holds. If (A) holds for
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the monomials fi,..., f,_1 then it holds for fi,..., f,. If B holds
then, by claim 3 with s = u, one has zf, = 0 for every k but one,
say [. For such integer we have

= (fi, -, fn) (T2, ., 20).

Because of Claim 4, by renaming the variables we may assume
that

<312) T1y...,Tg ¢ (fn) . (fla---ufn—lafn>

<313) Lsqly---, Ly € (fn) . (fla---ufn—lufn>

We apply the induction hypothesis to the monomials fi,..., f._1
with respect to the variables z1, ..., z,.

Assume that conclusion B holds, by Claim 3, we have
(3.4.4)x1f,, =0, for all but possibly one k€ {1,...,s}.

We now prove that z; € (f,,) : (f1,..., fuo1) forall s+1 <1 <,
and [2.1.4 imply

(315) xfi=...xfp.1 =0, forall s+1<I<u.

Indeed, assume by way of contradiction that there exists a j such that
x;f; # 0 for some j > s+ 1 and some ¢ <n—1, then 0 # z,f; € (fo).
Equation B4 implies that z;f; = 0 for all [ < s, but at most one. But
this contradicts the fact that we are assuming conclusion B and that
the set S/ has cardinality bigger then two and that for every j € S,
zjfi # 0.

Equations implies two possibilities:

(1) there exists an integer k, 1 < k < s, such that z;f, # 0. If
this is the case then we have z,f,, = 0. For if =4 f, € (f;) for
ke SZ', with 4 <n-—1 and LL’lLL’kfn S (LL’le) =0, by In this
case conclusion A holds as we have

fn
— € (fl,...,fn) : (l’l,...,l’u).
Lk
(2) 2xf,0 for all 1 < k < s. In this case conclusion B holds with
th partition S; = S, and S, = {1,...,s}.

Assume conclusion A holds for {fi,..., f,_1} with respect to the
variables {z1,...z,}. Withou loss of generality, we may assume that
fi

S (f17f27 .- -fn—l)-

Zq
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If we had
fi

(3.1.6) x— € (fn), forevery s+1<I[<u,

x1
then conclusion A would hold for the original set of monomials
{fi, .-, [} Asafi € (fn) forall s+1 <1< faf,=0°forall
s+1<I1<wu or N;; > N, then equations [5.1.6| hold. Without loss

of generality we may assume that
(3.1.7) N1y < Ny

and z;f; # 0 for some s+ 1 <[ < u. By Claim 1, there exists just
one value of [, say s + 1 such that z;f; # 0, as x;f1 € (f.). So we
may assume

(24, 8) f1 # 0, with Ny = N,y and x;f; =0, foralls+2 <[ <u
Claim 5: The following holds:
(319) Z'Qfl = ... Z'sfl =0

If, say, zof1 # 0, then 0 # 1’29{—1 € (f;) for some ¢ < n — 1, which
implies that Ny; > N;;. As, by assumptions, z,.1f; € (f,) then we
obtain the two following possibilities:

(1) either z,.1f; = 0, which implies z,,;f; = 0, contradiction
5.1.5 or
(2) N;; > N,,1, which implies Ny; > N,,;, contradictiong 2.1.7

This proves claim 5.
Because of Claim 4, there exists an index j, such that 1 < j <'s
and

(3.1.10) zj € (f1): (fas-- s fn)
We may assume that
(3.1.11) x1f1 #0, and therefore z f,, # 0

otherwise, by[3.1.8and 319 x,;f; = 0foralll € {1,...,s,5+2,...,u}.
It follows that condition A holds:

fl G(f1,...,fn)1($€1,...,xu).

Ls4+1
The following cases finish the proof of the theorem.
(1) Assume j = 1. Since z; f,, € (f1) and Ny; = N,,;, by[2.1.8 then
x1 f,, = 0 contradicting BI11]
(2) Assume j > 2. We may assume j = 2. By [21.8 and [3.1.9
we have z;f; = 0 for all [ # 1,s + 1. We may assume that

r1f1 # 0, by BLI1




TOTALLY REFLEXIVE MODULES AND ALMOST GORENSTEIN RINGS 1

(3.1.12)

(a) Assume that x5f, # 0. Since 21 € (f;) : (f1,..., fn) for

somei € {l,...,n—1}. As 0 # xof, € (f1) and x1 f, # 0,
by Claim (1) we need to have 2 < i < n — 1. For such an
17, we claim that

_'e(fla"'afn):(xla"'azu)‘

First notice that N;; = N,;+1 = Ny;+1, since 0 #£ x, f,, €
(f:) and by BL7 Moreover, as x5 f, # 0, by multiplying
x1fn by z2 we obtain that 0 # xof; € (f1). If xf; # 0 for
l#1,2,5+ 1, then z;f; # 0, contradicting B.1.7] and
As x40 € fo: (f1,---, fn), we obtain zg1f; € (f,) and
since N;;N,,; + 1 also $5+1£ € (fn)

(b) Assume that xof, = 0. If zof; =0, for all i € {1,...,u}

then we can ignore the variable x5 and the conclusion of
the theorem will hold by induction. So we may assum
that there is a ¢ # 1,n such that x5f; # 0 and zof; €
(f1). Therefore Ni; = Ny + 1. As z,f, € f, for every
s+1<I<u,if z;f; # 0 then Ay — 1 = N,5 < Ny which
implies that Ny, = A, which is a contradiction as all the
variables divide all the monomials. Therefore we have
that z;f; = 0 forall s+1 <t <wu. Also,as 0 # xaf; € (f1),
we have Ny, > Ny As x;fy = 0 forall [ # 1,s+ 1, it
follows that x;f; = 0 for all [ # 1,2. If also z; f; = 0 then
conclusion A holds as

ﬁ €(fryoy fn) i (x1, 0 xy).

€2
Assume that z;f; # 0. Since z; € (f;) : (f1,..., fn) for
some i. As 1 < s, @ # n. We claim that

fi €(fi, oy fn) i (@1, .., xy).

x1
AS 0 # z1f; € (f;), we have N; > Ny for all [ # 1.
As zof; # 0 this implies that zof; # 0. As zof; € (f1),
since x;f; = 0 for [ # 1,s + 1, we obtain that z;f; = 0
for | # 1,2,s+ 1. To prove the claim, it is therefore
enough to prove that %l’g € (f1) and g—jatsﬂ € (fn). As
0 # x1 f1 € (f;) we obtain N;; = Nj; +1 = N,,; + 1, where
the last equality follows from This together with
the fact that =, f; € (f1) and z4,1f; € (f,) concludes the

claim.
O
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(32) Corollary. Let S = Klzy,...,zq4)/(z,... ,did), and let
fi,--., fn be monomials in S such that R = S/0 :s (f1,..., fa) is
strongly almost Gorenstein. Then R does not admit non-free totally
reflexive modules.

Proof. As noted immediately after the statement of Theorem ??, the
strongly amost Gorenstein assumption means that we can apply
Theorem ??. If (A) holds, then Theorem can be applied to show
that k is a direct summand of the second syzygy of wg, and the
conclusion follows from Lemma [2.11

If (B) holds, it is easy to check that k is a direct summand of the
first syzygy of wg, and again the conclusion follows from Lemma 211
Indeed, note that

A A A A A A
(et 2, xy®) s (fr o fo) = (20 252, o 2+
(zjxj | z; and z; do not belong to the same S;).
The relations on the generators fi,..., f, of wg are z,;f; = 0

for j ¢ S;, and (Hjesil'?j_l)fi — (Hjesz_,x?j_l)fi/ = 0. Note that the
latter relations are killed by the maximal ideal, thus each of them

generates a copy of k which splits off the first syzygy. U
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