
BUBBLES OF CONGRUENT PRIMES

FRANK THORNE

Abstract. In [15], Shiu proved that if a and q are arbitrary coprime integers, then
there exist arbitrarily long strings of consecutive primes which are all congruent to
a modulo q. We generalize Shiu’s theorem to imaginary quadratic fields, where we
prove the existence of “bubbles” containing arbitrarily many primes which are all,
up to units, congruent to a modulo q.

1. Introduction and Statement of Results

In 1997, Shiu [15] proved the remarkable result that if a, q, and k are arbitrary
integers with (a, q) = 1, there exists a string of k consecutive primes

pn+1 ≡ pn+2 ≡ · · · ≡ pn+k ≡ a (mod q).

(Here pn denotes the nth prime.) Furthermore, for k sufficiently large in terms of q,
these primes can be chosen to satisfy the bound1

(1.1)
1

φ(q)

(

log log pn+1 log log log log pn+1

(log log log pn+1)2

)1/φ(q)

≪ k,

uniformly in q.
In this paper we consider an analogous question for imaginary quadratic fields. If

K is such a field, then the ring of integers OK forms a lattice in C, and the primes of
OK can be naturally visualized as lattice points. In this setting one may ask whether
there are clumps of primes, all of which lie in a fixed arithmetic progression. We
prove that this is indeed the case, up to multiplication by units:

Theorem 1.1. Suppose K is an imaginary quadratic field, k is a positive integer, and
a and q are elements of OK with q 6= 2 and (a, q) = 1. Then there exists a “bubble”

(1.2) B(r, x0) := {x ∈ C : |x − x0| < r}
with at least k primes, such that all the primes in this bubble are congruent to ua
modulo q for units u ∈ OK. Furthermore, for k sufficiently large in terms of q (and
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1In Shiu’s statement of his results, the initial 1/φ(q) in (1.1) and the requirement that k be large

are omitted, and the implied constant in (1.1) is allowed to depend on q. A careful reading of his
proof shows that the dependence on q may be controlled as stated.
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K), x0 can be chosen to satisfy

(1.3)
1

φK(q)

(

log log |x0| log log log log |x0|
(log log log |x0|)2

)ωK/hKφK(q)

≪ k.

The implied constant is absolute.

Here ωK denotes the number of units in OK , hK is the class number of K, and
φK(q) := |(OK/(q))×|.
Remarks. The unit u will not necessarily be the same for each prime in the bubble
(1.2). It would be desirable to obtain a version of Theorem 1.1 where each prime is
congruent to a modulo q, without the ambiguity involving units. Unfortunately, this
ambiguity appears to be unavoidable given our methods of proof.

The restriction that q 6= 2 is not severe; to obtain prime bubbles modulo 2 we may
take (for example) q = 4. For the reason behind this restriction, see Lemma 3.1.

Example. Let K = Q(i), q = 5+i, and a = 1. A computer search reveals that the ball
of radius

√
7.5 centered at 2+17i contains three primes, all of which are congruent to

±1 or ±i modulo q. Similarly the ball of radius
√

23.5 centered at 59 + 779i contains
six primes, all of which are congruent to ±1 or ±i. Theorem 1.1 establishes the
existence of infinitely many such balls, with ωK/φK(q) = 1/3.

The proof of Theorem 1.1 is an adaptation of Shiu’s original proof [15], and in
particular uses the Maier matrix method. (See the survey article of Granville [7] for
an interesting overview of the method and related results.) In our proof, we will
construct “Maier matrices” containing certain elements of OK , and our construction
will force the majority of the primes in these matrices to be congruent to ua modulo
q. Some combinatorial geometry will then allow us to deduce Theorem 1.1.

To use Maier’s method we will require a result on the distribution of primes in
certain arithmetic progressions. This result is an analogue of a theorem of Gallagher
([6]; see also [11], Lemma 2), who proved that the primes of Z are reasonably well
distributed in arithmetic progressions modulo q, for reasonably large moduli q which
meet certain conditions on the associated Dirichlet L-functions. We will prove the
following analogue of Gallagher’s theorem for OK :

Theorem 1.2. Let K be an imaginary quadratic field. Suppose that q ∈ OK is a
modulus for which none of the Hecke L-functions modulo q have a zero in the region

(1.4) σ > 1 − C1/ log[(Nq)(|t| + 1)],

for a fixed constant C1. Suppose further that q is not u, 2u, or −3±
√
−3

2
u for any unit

u of OK. Then for D ≥ 0 we have

π(2x; q, a) − π(x; q, a) = (ωK + ox,D(1))
x

hKφK(q) log x
,

uniformly in q for (a, q) = 1, Nq ≥ |∆K |, and x ≥ NqD.
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Here π(x; q, a) denotes the number of principal prime ideals p of norm ≤ x, such
that p ≡ a (mod q) for any generator p of p, and ox,D(1) denotes an error term
bounded above by any ǫ > 0, provided both x and D are chosen sufficiently large.
We remark that the condition Nq ≥ |∆K | is required only if the ox,D(1) term is to be
independent of K.

We will further prove in Proposition 5.1 that the zero-free region (1.4) holds for a
suitably large (infinite) set of moduli q.

Generally speaking, the results of this paper indicate that the Maier matrix method
“works” for imaginary quadratic fields (at least), and we believe that it would not
be difficult to prove the existence of various irregularities in the distribution of the
primes of OK , in analogy with results for Z obtained by Maier [12], Granville and
Soundararajan [8], and others. We have not, however, undertaken this task here.

The outline of the paper is as follows. In Section 3 we briefly overview some back-
ground material on Hecke characters and Hecke L-functions, and we discuss how the
units of OK affect our analysis. We will then give the proof of Theorem 1.2. In
Section 4 we prove the previously mentioned result in combinatorial geometry which
will allow us to deduce the existence of a prime bubble from our Maier matrix con-
struction. In Section 5 we will prove several additional lemmas, and finally we give
the proof of Theorem 1.1 in Section 6.

Setup and notation. We make the following assumptions throughout (some of
which were mentioned earlier). K is an imaginary quadratic field with a fixed embed-
ding K → C, and we will write hK for the class number of K and ω = ωK ∈ {2, 4, 6}
for the number of units in K. Any K-dependence of implicit constants occuring in
our results will be explicitly noted.

We will write q = (q) throughout, and where it does not lead to ambiguity we will
refer to q and q interchangeably. We assume that q has been chosen so that the units
of OK all represent distinct residue classes mod q, and we will prove in Lemma 3.1
that this only excludes three choices for q. We further assume that the units do not
represent all reduced residue classes modulo q; if this happens then Theorem 1.1 is
trivial.

As K will be fixed, we will simply write φ(q) (or φ(q)) for φK(q) := |(OK/(q))∗|.
We will also write hq for hKφ(q)/ω, the size of the ray class group.

It will be convenient to define congruences on ideals. For a principal ideal b of OK

and elements a and q of OK , we will say that b ≡ a (mod q) if b ≡ a (mod q) for any
b for which b = (b). This does not determine a uniquely, and indeed if b ≡ a then
b ≡ ua for any unit u ∈ OK . Equivalently, we see that b ≡ a (mod q) if b and (a)
represent the same class in the ray class group H(q).

For any nonprincipal ideal b we will say that b 6≡ a (mod q) for each a.
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3. Proof of Theorem 1.2

We will need to do some analysis involving Hecke L-functions. For the sake of
completeness we give a brief overview of the definitions and terminology here.

We would like to consider elements of OK and their distribution in the quotient
group OK/q. However, it will prove much easier to work with ideals. In place of
OK/q we consider the ray class group modulo q

(3.1) Hq := Jq/P q,

where Jq is the group of all fractional ideals coprime to q, and P q is the group of
principal fractional ideals (a) = (b)(c)−1 with b, c ∈ OK and b ≡ c ≡ 1 mod q. If we
write Jq

1 for the group of principal fractional ideals coprime to q, then Jq

1/P
q is in

one-to-one correspondence with the set of sets of reduced residue classes modulo q

(3.2) {ua : (a, q) = 1, u ∈ O×
K},

where a is a fixed in each set and u ranges over all units of OK . The proof of Theorem
1.1 will exhibit bubbles of prime elements p, such that the ideals (p) all lie in a fixed
class in Jq

1/P
q.

With a few exceptions, the size of Hq is given by the following simple formula:

Lemma 3.1. Suppose that q 6= (2),
(−3±

√
−3

2

)

and that φ(q) > 1. Then we have

(3.3) |Hq| = hKφ(q)/ω,

where hK is the class number of K, and ω ∈ {2, 4, 6} denotes the number of units of
OK.

We recall that we will write hq = hKφ(q)/ω throughout, as this quantity occurs
throughout our analysis.

Proof. We first note that Jq/Jq

1 is isomorphic to the usual class group, so it suffices
to show that there are φ(q)/ω sets counted in (3.2). And as long as u− 1 6∈ q for any
unit u 6= 1 of OK , we see that a cannot be congruent to ua modulo q for any unit u
and reduced residue a. Therefore, the residues ua in (3.2) lie in distinct classes for
each unit u, and so we obtain the formula (3.3). Thus, it is enough to check that

u − 1 6∈ q for u ∈ {−1,±
√
−1, ±1±

√
−3

2
}:

If u = −1, then (3.3) holds unless 2 ∈ q, in which case either φ(q) = 1 or q = (2).
If u = ±

√
−1, then (3.3) holds unless q = (1 + i), in which case φ(q) = 1.

If u = 1±
√
−3

2
, then u − 1 is also a unit and is not contained in any proper ideal.

If u = −1±
√
−3

2
, then (3.3) holds unless −3±

√
−3

2
∈ q, in which case q =

(−3±
√
−3

2

)

. �
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Remark. In the case where q =
(−3±

√
−3

2

)

and K = Q(
√
−3), we observe that the

units of OK cover all reduced residue classes mod q, so that Theorem 1.1 follows
trivially.

From the group Hq we obtain Hecke characters χ of K by lifting any character χ
of Hq to Jq in the obvious way, and setting χ(a) = 0 for any a not coprime to q.
Throughout, we will only consider Hecke characters obtained in this fashion. (See,
however, Chapter VII.6 of [13] (for example) for a much more general discussion.)
For a Hecke character χ, the associated Hecke L-function is defined by the equation

(3.4) L(s, χ) :=
∑

a

χ(a)(Na)−s,

where a runs over all integral ideals of OK . The proof of Theorem 1.2 will then follow
from the following estimate:

Proposition 3.2. Assume that q is a modulus such that none of the Hecke L-
functions modulo q have a zero in the region (1.4). Then if max(exp(log1/2 x), ∆K) ≤
Nq ≤ xb for a fixed constant b > 0, then we have for a fixed constant a

(3.5)
∑

χ

∣

∣

∣

∑

Np∈[x,2x]

χ(p) log(Np)
∣

∣

∣
≪ x exp

(

− a
log x

log Nq

)

.

The first sum is over all nonprincipal characters modulo q, and the implied constant
is absolute.

We remark that with additional care we expect to be able to prove a similar result
for an arbitrary number field K.

Before proving Proposition 3.2 we will use it to derive Theorem 1.2:

Proof of Theorem 1.2. By the orthogonality relations, we have
∑

Np∈[x,2x]
p≡a mod q

log(Np) =
1

hq

∑

Np∈[x,2x]

∑

χ (mod q)

χ̄(a)χ(p) log(Np)

=
1

hq

∑

Np∈[x,2x]

log(Np) + O

(

1

hq

∑

χ6=χ0

∣

∣

∣

∣

∑

Np∈[x,2x]

χ(p) log(Np)

∣

∣

∣

∣

)

,

and for x ≤ exp((log Nq)2), the result now follows from the prime ideal theorem and
Proposition 3.2.

For the range x > exp((log Nq)2), one proof can be given as follows: Taking T =
exp((log x)3/4) in the proof of Proposition 3.2, we see that the quantity in (3.5) is
≪ x exp(−a(log x)1/4), and this suffices for our result. �

To prove Proposition 3.2 we will closely follow Gallagher [6]. Gallagher proves a
similar result for Dirichlet L-functions, but with an additional sum over moduli q. He
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deduces his result from a log-free zero-density estimate for these L-functions, and in
our case the appropriate zero-density estimate has been proved by Fogels [5]:

Proposition 3.3 (Fogels). We have for any q ∈ OK and any T ≥ ∆KNq

(3.6)
∑

χ

Nχ(α, T ) ≤ T c(1−α).

Here Nχ(α, T ) denotes the number of zeroes ρ = β + it of L(s, χ) with α < β < 1 and
|t| < T , χ ranges over all characters modulo q, ∆K is the discriminant of K, and c
is (for quadratic fields) an absolute constant.

Proof of Proposition 3.2. At the outset, we will choose T = (Nq)2 ≤ x1/2c, which is
an acceptable choice in all of our estimates.

By standard analytic techniques (see (5.53) and (5.65) of [9]), we have

(3.7)
∑

Na∈[x,2x]

χ(a)Λ(a) = δχx −
∑

ρ

(2x)ρ − xρ

ρ
+ O

(x log2 x

T

)

,

where δχ is 1 or 0 according to whether χ is principal or not, Λ(a) := log(Np) if a is
a power of some prime p and 0 otherwise, and ρ ranges over all the zeroes ρ = β + it
of L(s, χ) in the critical strip with |t| < T .

We observe that for each ρ = β + it,

(2x)ρ − xρ

ρ
≪ xβ.

The terms where a is a prime power (but not a prime) contribute ≪ x1/2 to the
sum (3.7) and so may be absorbed into the error term for T ≤ x1/2. Therefore, for
nonprincipal χ we see that

∑

Np∈[x,2x]

χ(p) log(Np) ≪
∑

ρ

xβ +
x log2 x

T
.

Therefore,

∑

χ6=χ0

∣

∣

∣

∑

Np∈[x,2x]

χ(p) log(Np)
∣

∣

∣
≪

∑

χ6=χ0

∑

ρ

xβ +
x log2 x(Nq)

T
.

The sum over χ and ρ on the right is
(3.8)

−
∫ 1

0

xσdσ

(

∑

χ6=χ0

Nχ(σ, T )
)

= −xσ
(

∑

χ6=χ0

Nχ(σ, T )
)

∣

∣

∣

∣

1

0

+

∫ 1

0

xσ log x
(

∑

χ6=χ0

Nχ(σ, T )
)

dσ.

The first term of (3.8) is ([9], Theorem 5.8)
∑

χ6=χ0

Nχ(0, T ) ≪ TNq log(TNq).
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Using the zero-free region (1.4) and Proposition 3.3, we see that the second term of
(3.8) is

≪
∫ 1−C1/ log[(Nq)(T+1)]

0

(xσ log x)T c(1−σ)dσ.

Evaluating the integral above and recalling that T ≤ x1/2c, this second term is

≪ x exp

(

−C1

2

log x

log[(Nq)(T + 1)]

)

.

We conclude from all these estimates that
∑′

χ

∣

∣

∣

∑

Np∈[x,2x]

χ(p) log(Np)
∣

∣

∣
≪

(x log2 x)Nq

T
+ TNq log(TNq) + x exp

(

−C1

2

log x

log[(Nq)(T + 1)]

)

.

With the choice T = (Nq)2 and the hypothesis that max(exp(log1/2 x), |∆K |) ≤ Nq ≤
min(x1/4c, x1/4), we obtain the proposition. �

4. Bubbles of Good and Bad Points

We will require a combinatorial argument to prove the existence of bubbles of
“good” primes. This part of the proof has nothing to do with primes in particular,
so we formulate it as a general proposition in combinatorial geometry.

Throughout, we will write C(r) for the circle centered at the origin of radius r.
When we speak of a circle containing points, we will mean that these points are in
the interior of the circle and not on the circle itself.

Proposition 4.1. Suppose the plane contains some number of “good” and “bad”
points, such C(1) contains g good points and C(3) contains b bad points. Then there
exists some circle in the plane containing > g/(2b+12) good points and no bad points.

In our application to the proof of Theorem 1.1, b and g will be large with b = o(g).
The construction will be scaled and translated to appropriate regions of the complex
plane.

We gratefully acknowledge a contribution from Bob Hough, who suggested ideas
that have allowed us to improve Proposition 4.1 and simplify the proof.

We shall require the existence of a so-called Delaunay triangulation:

Lemma 4.2. Let P be a set of points in the plane, not all collinear. Then there
exists a triangulation (called a Delaunay triangulation) of P, such that no point of P
is inside the circumcircle of any triangle.

See, e.g., Chapter 9 of [3] for a proof of this. In the (unlikely) case where all points
of P are collinear, the proof of Proposition 4.1 is trivial.

We will also need the following lemma:
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Lemma 4.3. Let P be a set of N points in the plane, not all collinear, and let k
denote the number of points in P that lie on the boundary of the convex hull of P.
Then any triangulation of P has 2n − 2 − k triangles.

This follows easily from Euler’s formula; see Theorem 9.1 of [3] for details.

Proof of Proposition 4.1. The proof is by geometric construction. Define a set of
vertices V , consisting of all bad points of distance less than 3 from the origin, as well
as a regular 7-gon centered at the origin, so that the distance from each vertex to the
origin is 2.

Construct the Delaunay triangulation T of V , and let C be the set of circumcircles
of all triangles in T . Then let C′ ⊆ C be the the subset of those circles which intersect
the interior of the unit circle. By construction, no circle in C′ contains any point of V ,
and the circles in C′ cover the interior of C(1), with the exception of any bad points.

We claim that every circle in C′ is contained in the interior of C(3). Supposing for
now that this happens, we know that the circles in C′ do not contain any bad points,
including any which may lie on or outside C(3). These circles do contain all of the
good points in C(1), and it follows that one such circle contains ≥ g/|C′| good points.
Lemma 4.3 implies that |C′| < 2(b + 7) − 2, and this establishes the proposition.

It remains to prove our claim, and the proof is by contradiction. In particular,
suppose that C is some circle in C′ not contained in C(3); then C or its interior will
contain points P1 on C(1) and P3 on C(3). Furthermore, we may take these points
to be on the ray from the origin towards the center of C. We also easily check that
C must contain the circle having P1P3 as its diameter.

For some point Q of the 7-gon, the angle between
−→
OQ and

−−→
OP3 is at most π/7

and in particular is less than π/6. We check that the distance between Q and the
midpoint of P1P3 is then less than 1, which implies that Q is contained in the interior
of C, our contradiction.

�

5. Additional Lemmas

We introduce the notation

(5.1) P(y, q, p0) := q
∏

Np≤y;p6=p0

p.

Our first result is that for a sufficient number of moduli P(y, q, p0), the associated
Hecke L-functions have a zero-free region of the form required by Theorem 1.2.

Lemma 5.1. For all sufficiently large x there exist an integer y and a prime p0 with
x < NP(y, q, p0) ≪ x log3 x and Np0 ≫ log y, such that none of the Hecke L-functions
modulo P(y, q, p0) have a zero in the region

(5.2) 1 ≥ ℜs > 1 − C2

log[(NP(y, q, p0))(|t| + 1)]
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for a fixed constant C2.

Here “sufficiently large” depends on K. We could easily control this K-dependence
here, but it would be more difficult in Lemma 5.3.

The lemma and its proof are the direct analogues of Theorem 1 of [15]. We will
require the following zero-free region for Hecke L-functions, due to Fogels [4]:

Lemma 5.2 (Fogels). Assume that a is an ideal of OK with |∆KNa| sufficiently large.
Then for a fixed absolute constant C, at most one of the Hecke L-functions L(s, χ)
modulo a has any zeroes in the region

(5.3) σ ≥ 1 − C

log[|∆K |Na(|t| + 1)]
≥ 3

4
.

Furthermore, if such an L(s, χ) exists, then it has at most one zero β in the region
(5.3), which is necessarily real, and

(5.4) β < 1 − (|∆K |Na)−4.

Remark. The above results in fact hold for an arbitrary number field K. In this case
C depends on the degree of K, and the exponent −4 in (5.4) should be replaced with
−2[K : Q].

Proof of Lemma 5.1. Consider the product

(5.5) P ′(y, q) := q
∏

Np≤y

p,

and suppose that an exceptional character mod P ′(y, q) exists; i.e., suppose that there
exists a character χ1 mod P ′(y, q) whose L-function has a real zero β in the range

(5.6) 1 ≥ β ≥ 1 − C

log(|∆K |NP ′(y, q))
.

Write χ′
1 (mod P ′′) for the primitive character inducing χ1, so that P ′′|P ′(y, q). Then

comparing (5.6) with (5.4) we see2 that NP ′′ ≫ 1
|∆K |(log NP ′(y, q))1/4. We thus see

that for sufficiently large y (in terms of q), P ′′ will have a prime divisor p0 satisfying
p0 ≫ log(NP ′′) ≫ log log(NP ′(y, q)) ≫ log y.

We claim that there can be no character χ2 modulo P(y, q, p0) whose L-function
has a real zero in the region

(5.7) β′ > 1 − C

2 log(|∆K |NP(y, q, p0))
.

2If |∆K | is small it might be the case that P ′′ is of too small norm to apply (5.4). For each
such K we may choose a fixed ideal b of sufficiently large norm, and write χ′′

1 for the character
modulo bP ′′ induced by χ′

1. The associated L-function will have a zero at the same spot, and
we conclude that N(bP ′′) ≫ 1

|∆K | (log NP ′(y, q))1/4. As b is fixed for each K, this implies that

NP ′′ ≫ 1

|∆K | (log NP ′(y, q))1/4 as well.
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Assuming this for now, we obtain the region (5.2) for P(y, q, p0) with C2 = C/4,
provided that y is large enough so that NP(y, q, p0) ≥ |∆K |. To prove our claim,
suppose such a χ2 exists. Then β′ will be in the region (5.6), and as χ2 and χ′

1 induce
different characters modulo P ′(y, q), β and β′ will be zeroes to distinct L-functions
modulo P ′(y, q) in the region (5.3), contradicting Lemma 5.2.

If no exceptional character mod P ′(y, q) exists, we choose p0 to be any prime divisor
of P ′(y, q) of norm ≥ log y. We again take C2 = C/4 and see that (for large y) no
L-function modulo P(y, q, p0) will have a zero in the region (5.7).

To conclude, we must show that we can find a P(y, q, p0) in each range x <
NP(y, q, p0) ≪ x log3 x. In quadratic fields there can exist at most two distinct primes
of the same norm. For a fixed large y, let y′ > y be minimal so that P(y′, q) 6= P(y, q).
Then NP(y′, q)/NP(y, q) ≤ (y′)2 = (1+o(1)) log2(NP(y′, q)), so for any large x we can
find y with 2x log x < NP(y, q) < 3x log3 x. Removing a prime p0 from our product
we see that necessarily Np0 ≤ y = (1 + o(1)) log x and so x < NP(y, q, p0) ≪ x log3 x,
as desired. �

Lemma 5.3. Let S(x) denote the number of ideals of norm ≤ x whose prime (ideal)
factors are all ≡ 1 (mod q). Then

(5.8) S(x) = (Cq + oq(1))x(log x)−1+1/hq ,

where

(5.9) Cq :=
1

Γ(1/hq)
lim

s→1+

[

(s − 1)1/hq

∏

p≡1 (mod q)

(

1 − 1

(Np)−s

)−1
]

.

Proof. This is a generalization of Landau’s work on sums of two squares, and also of
Lemma 3 of [15]. Write

(5.10) F (s) :=
∏

p≡1 (mod q)

(

1 − 1

(Np)−s

)−1

.

Then by a Tauberian theorem due to Raikov ([2], Theorem 2.4.1), the asymptotic
(5.8) follows if we can write

F (s) =
H(s)

(s − 1)1/hq

for a function H(s) which is holomorphic and nonzero in the region ℜ(s) ≥ 1, with

Cq =
H(1)

Γ(1/hq)
.

We write

(5.11) Θ(s) :=

∏

χ (mod q) L(s, χ)

F (s)hq

,
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and computing the Dirichlet series expansion for log Θ(s) (exactly as in [15]) we
conclude that Θ(s) is holomorphic for ℜ(s) > 1

2
. The product

∏

χ (mod q) L(s, χ) has

a simple pole at s = 1, and is otherwise holomorphic and nonzero in ℜ(s) ≥ 1. The
result follows. �

We now need a result from the theory of ‘smooth’ numbers, i.e., numbers whose
prime factors are all sufficiently small. (See, for example, Chapter III.5 of Tenen-
baum’s book [16] for a general introduction to the theory.) Here we require a result
for ‘smooth’ algebraic integers in K.

Lemma 5.4. Let ΨK(x, y) be the number of ideals of norm < x which are composed
only of primes with norm < y, and write u := log x/ log y. Then for 1 ≤ u ≤
exp(c(log y)3/5−ǫ) (for a certain constant c) we have

(5.12) ΨK(x, y) ≪K x log2 y exp(−u(log u + log log u + O(1))).

Proof. This follows immediately by comparing results of de Bruijn [1] and Krause [10].
de Bruijn proved (5.12) for K = Q. For general K, Krause proved an asymptotic
formula for ΨK(x, y) in terms of the Dickman function, and Krause’s result implies
in particular that for u in the range specified,

lim
x,y→∞

ΨK(x, y)

Ψ(x, y)
= ress=1ζK(s),

where ζK(s) denotes the Dedekind zeta function. The lemma then follows immedi-
ately. �

6. Proof of Theorem 1.1

We begin by fixing a and q = (q); except when noted to the contrary, implied
constants in our analysis do not depend on q. As discussed previously, we assume
that the units of OK do not represent all the reduced residue classes modulo q, and
that the residue classes represented are all distinct.

We assume that a large absolute constant D is given, as well as an integer x which
is sufficiently large in terms of q (and K). We then use Lemma 5.1 to choose y and
p0 such that

x1/D < NP(y, q, p0) ≪ x1/D log x

and such that there is no Hecke L-function modulo P(y, q, p0) with a zero in the
region (5.2). We introduce variables z < y and t < (yz)1/2, and define a set of primes
P as follows: If a is not congruent to a unit modulo q, we define

(6.1) P :=







{p : Np ≤ y, p 6= p0, p 6≡ 1, a mod q)}
∪ {p : t ≤ Np ≤ y, p 6= p0, p ≡ 1 mod q}
∪ {p : Np ≤ yz/t, p 6= p0, p ≡ a mod q}.
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If a is congruent to a unit modulo q, we define instead

(6.2) P :=

{

{p : Np ≤ y, p 6= p0, p 6≡ 1 mod q}
∪ {p : t ≤ Np ≤ yz/t, p 6= p0, p ≡ 1 mod q}.

The latter definition (6.2) is motivated by simplicity, as it allows us to treat both
cases simultaneously. Following Shiu [15], it should be possible to define P differently
in this case, and modestly improve our result for a certain subset of moduli a.

We further define

(6.3) Q = (Q) := q
∏

p∈P
p6=p1

p.

Here p1 is any prime ideal with log y < Np1 ≤ y for which Q is then principal. We
may then write Q for any generator of Q.

We see that Q|P(y, q, p0) and log(NQ) ≥ 1
3
log(NP(y, q, p0)). Lemma 5.1 thus

implies that the Hecke L-functions modulo Q have no zeroes in the region

(6.4) 1 ≥ ℜs > 1 − C2

3 log[(NQ)(|t| + 1)]
,

as any such zeroes would induce zeroes of L-functions modulo P(y, q, p0) at the same
point. Therefore Q satisfies the hypothesis of Theorem 1.2 with C1 = C2/3, so that
the primes are well-distributed in arithmetic progressions modulo Q.

Our construction is an adaptation of that of Shiu. In our case, the geometrical
argument given in Section 4 requires us to keep track of more “bad” primes than
“good”. Thus we define “bubbles” B and B′ consisting of those elements of OK

whose norm is less than yz and 9yz, respectively. We further define Maier matrices
M and M ′, with (i, b) entry equal to the algebraic integer iQ+ b, where i ranges over
all elements of OK with norm in (NQD−1, 2NQD−1), and b ranges over elements of B
and B′ respectively. We regard M naturally as a submatrix of M ′.

We define sets

(6.5) S := {i ∈ B; (i, Q) = 1; i ≡ ua mod q for some u ∈ O×
K}

and

(6.6) T := {i ∈ B′; (i, Q) = 1; i 6≡ ua mod q for any u ∈ O×
K}.

We will prove that S is much larger than T .
To estimate S, we observe that most elements of S are uniquely determined as

elements of the form pn, where p is a prime of norm > yz/t and is congruent to ua
for some unit u, and n is a product of primes congruent to 1 modulo q. (There will
also be multiples of p0 and p1, which we ignore.) Subdividing dyadically, we see that

|S| ≥
⌊ log t

log 2
⌋−2

∑

i=0

(

π(2i+1yz/t; q, ua) − π(2iyz/t; q, ua)
)

S(t/2i+1)
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≫ Cq

hq

⌊ log t

log 2
⌋−i0

∑

i=0

(

yz2i

t log y

)

· t

2i+1
log(t/2i+1)−1+1/hq .

Here i0 is a constant, depending on q, such that Lemma 5.3 gives an asymptotic
estimate for x ≫ 2i0 . We now simplify and approximate the sum by the corresponding
integral, and conclude that

(6.7) |S| ≫ Cqyz

hq log y

∫
log t

log 2
−i0

0

(

log t − s log 2
)−1+1/hq

ds

=
Cqyz

(log 2)(log y)

(

(log t)1/hq − (i0 log 2)1/hq

)

≫ Cqyz

log y
(log t)1/hq .

Elements of T come in three types: multiples of p0 and p1, multiples of a prime
of norm greater than y, or products of a unit and elements whose norms are less
than t and are congruent to 1 modulo q. We write T ′, T ′′, T ′′′ for these subsets of
T respectively and we will estimate each in turn. We have |T ′| ≪ yz/ log y because
Np0, Np1 ≫ log y. For T ′′, we have that

|T ′′| ≤
⌈ log(9z)

log 2
⌉−i0

∑

i=0

(

π(2i+1y) − π(2iy)
)

S(9z/2i) +
(

π(9yz) − π(yz/2i0)
)

S(9 · 2i0).

≪
⌈ log(9z)

log 2
⌉−i0

∑

i=0

(

2iωy

hK log y

)

· Cqz

2i
(log(9z/2i))−1+1/hq + Oq

( yz

log y

)

.

In the above, π(x) counts the number of prime elements of norm ≤ x. Estimating in
the same way as in (6.7), we conclude that

|T ′′| ≪ Cqφ(q)
yz(log z)1/hq

log y
.

To count elements T ′′′ we apply Lemma 5.4. We choose (as in [15])

(6.8) t = exp
( log y log log log y

4 log log y

)

,

and the lemma implies that

|T ′′′| = ωΨ(yz, t) ≪ yz(log t)2 exp(−4 log log y + o(log log y)) ≪ yz

log y
.

Putting these estimates together we conclude that

(6.9) |T | ≪ Cqφ(q)
yz(log z)1/hq

log y
.

If y is large in terms of K, then the implied constant does not depend on K.
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Write P1 for the number of primes in M (henceforth “good primes”) congruent
to ua modulo q for any unit u ∈ OK , and write P2 for the number of primes (“bad
primes”) in M ′ not congruent to ua for any u. By Theorem 1.2, P1 and P2 are
determined by |S| and |T |, up to an error term which can be made small by choosing
large x and D. We therefore conclude that

(6.10) P1 ≫ Cq

yz(log t)1/hq

log y

NQD

φ(Q) log(NQD)

and

P2 ≪ Cqφ(q)
yz(log z)1/hq

log y

NQD

φ(Q) log(NQD)
.

We will split into two cases and compare numbers of good and bad primes. Through-
out, we count all bad primes appearing in M ′ (which contains M), but only those
good primes appearing in M .

In the first case the majority of good primes occur in rows containing at least one
bad prime, in which case the proportion of good to bad primes in some such row of
M ′ is ≫ |S|/|T |. These primes all occur in some circle in C of radius 3

√
yz, and

applying Proposition 4.1 we see that this circle contains a subcircle with ≫ |S|/|T |
good primes and no bad primes, which is our desired bubble of congruent primes.
The number of primes in the bubble will be

≫ |S|/|T | ≫ 1

φ(q)

( log t

log z

)1/hq

.

In the second case, the majority of good primes occur in rows not containing any
bad primes. These such rows then constitute bubbles of congruent primes of radius
3
√

yz, and at least one will contain ≫ P1/R primes, where R denotes the number
of rows, i.e., the number of elements of OK with norm in (NQD−1, 2NQD−1). As OK

forms a lattice in C we have R ∼ CKNQD−1 for some constant CK depending on K.
Using (6.10), we see that some row of M will be a bubble containing

≫K Cq

yz(log t)1/hq

log y

NQ

φ(Q) log(NQD)

primes. Now we have

log(NQ) ≪
∑

Np≤y

log(Np) ≪ y,

and

(6.11)
NQ

φ(Q)
=

Nq

φ(q)

∏

p∈P

(

1 − 1

Np

)−1

≫q log y(log t)−1/hq .

To prove (6.11), one can use a result of Rosen (Theorem 4 of [14], along with the
result of Landau cited immediately afterwards). The result is then easily proved,
provided that the dependence on q (and K) is allowed.
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Combining these results, we conclude that this bubble contains ≫q z primes.
Therefore, our argument produces a bubble of

≫ min
( 1

φ(q)

( log t

log z

)1/hq

, C ′
qz

)

congruent primes, for a constant C ′
q depending on q. Our theorem follows by choosing

z = log log(NQ).
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