1. (5 points) Represent $23, \frac{1}{4}, -7, \text{ and } -\frac{1}{14}$ as 7-adic numbers. Which of them are 7-adic integers?

2. (5 points) Write out a formal proof that there exists an injection $\mathbb{Z}_p \rightarrow \mathbb{Z}_p$.

3. (*7 points) Look up and write out the definition of an inverse limit in general, in terms of a universal property. (For example, see the Wikipedia page.) Prove that \mathbb{Z}_p is the inverse limit of the rings $\mathbb{Z}/(p^n)$, under the projection morphisms, according to this definition.

4. (5 points) Represent $\sqrt{6}$ as a 5-adic integer (find the first few 5-adic digits, and prove that you can keep going without quoting Hensel’s lemma), and prove that you cannot represent $\sqrt{6}$ as a 7-adic integer.

5. (10 points) Starting from the completion definition of \mathbb{Q}_p (Cauchy sequences mod Cauchy sequences converging to zero), prove the following properties, less sketchily than was done in lecture:

 - \mathbb{Q}_p is a field.
 - \mathbb{Z}_p is a ring, and (p) is the unique maximal ideal.
 - \mathbb{Q}_p and \mathbb{Z}_p possess an absolute value which agrees with the p-adic absolute value on \mathbb{Q} and \mathbb{Z}, and are complete with respect to this absolute value.

6. (5 points) Prove that addition or multiplication by any fixed element of \mathbb{Q}_p is (topologically) a homeomorphism from \mathbb{Q}_p to itself.

 If you want to study valuations in general, the adeles, Tate’s thesis, etc., please be sure to do this exercise. (Or just convince yourself it’s “obvious”.)

7. (7 points) \mathbb{Z}_p is compact.