Important corollary.

Approximation Theorem. Let \(l_1, l_1, \ldots, l_n \) be pairwise inequivalent valuations. Given \(a_1, \ldots, a_n \in K \) and \(\epsilon > 0 \).

There exists \(x \in K \) s.t.

\[
| x - a_i |_i < \epsilon \quad \text{for all} \quad i = 1, \ldots, n.
\]

What does this mean?

Let \(K = \mathbb{Q} \), consider \(l_1, l_2, l_3, l_4, l_5, l_6 \), \(\epsilon = \frac{1}{10} \).

Let \(a_1 = 2, a_2 = 3, a_3 = 5 \).

Then there exists \(x \in \mathbb{Q} \),

\[
| x - 2 |_3 < \frac{1}{10}, \quad | x - 3 |_5 < \frac{1}{10}, \quad | x - 5 |_7 < \frac{1}{10}.
\]

If \(x \in \mathbb{Z} \), says same as \(x \equiv 2 \pmod{27} \),

\[
 x \equiv 3 \pmod{25}, \quad x \equiv 5 \pmod{49}.
\]

So it's like CRT.

But, maybe \(x \in \mathbb{Q} \).

Could also throw in the real valuation.

E.g., \(| x - \pi |_\infty < \frac{1}{10} \).

Here, certainly \(x \in \mathbb{Z} \) not good enough!

Proof.

Claim. There exists \(x \in K \) with

\[
| x |_i > 1, \quad | x |_j < 1 \quad \text{for} \quad j \neq 1.
\]

Reference.
Proof of claim for \(n = 2 \). (Two rotations)

Almost a tautology. By the extended prop.,

there are \(\xi, \beta \in K \) with

\[
|\xi| \leq 1 \quad |\xi|^2 \geq 1 \quad \text{(if } |\xi| \text{ we're done)}
\]

\[
|\beta| \leq 1 \quad |\beta|^2 \geq 1.
\]

and \(\left| \frac{\xi}{\beta} \right| < 1 \quad \left| \frac{\xi}{\beta} \right|^2 > 1 \).

Now, induct. Suppose

\[
|\beta_j| > 1 \quad |\beta_j| < 1 \quad \text{for } j = 2, \ldots, n-1.
\]

If \(|\beta_n| < 1 \)? done.

If \(|\beta_n| = 1 \)? Take \(\gamma' = \gamma^m \) where \(m \) is big,

\[
|\gamma| < 1 \quad |\gamma|^n > 1.
\]

If \(|\beta_n| > 1 \)? Look at \(\frac{\gamma^m}{1 + \gamma^m} \), converges to 1 w.r.t.

\(1, 1_n \)

and \(1, 1_n \)

converges to 0 w.r.t.

\(1, 1_n \)

Choose \(\gamma' = \frac{\gamma^m}{1 + \gamma^m} \) for \(m \) big.

So the sequence \(\frac{\gamma^m}{1 + \gamma^m} \) converges to 1 in \(1, 1_n \)

0 in \(1, 1_n \)

(such very close).

Write \(w_1 \) for this, and similarly \(w_2, \ldots, w_n \).

Then, choose \(\gamma = a_1 w_1 + a_2 w_2 + \cdots + a_n w_n \).

Then \(|x - a_1| = |a_1 (w_1 - 1) + a_2 w_2 + \cdots + a_n w_n| \)

is really small \(\text{and so } \epsilon \text{ for suitable } x \).
Prop. (3.7) Every valuation of \mathbb{A} is equivalent to one of the valuations $1 \cdot |p|$ or $1 \cdot |10|$

Some general setup and results. (Same proofs as for \mathbb{Z}_p, \mathbb{Q}_p.) (See N., Ch. 3 - 4.)

Proposition. Let K be a field with valuation $v(-)$ and absolute value $|\cdot| = q^{-v(-)}$ for some $q > 1$.

(Recall: different choices of q : equiv. valuations)

The subset
$$O = \{ x \in K : v(x) \geq 0 \} = \{ x \in K : |x| \leq 1 \}$$

is a ring with group of units
$$O^* = \{ x \in K : v(x) = 0 \} = \{ x \in K : |x| = 1 \}$$

and unique maximal ideal
$$p = \{ x \in K : v(x) > 1 \} = \{ x \in K : |x| < 1 \}$$

The valuation is discrete if it has a smallest positive value s, and normalized if $s = 1$.

Dividing by s, can always pass to a normalized valuation.

The prime elements are those in $\mathfrak{p} / \mathfrak{p}^2$.

Writing π for an arbitrary prime elt., every $x \in K^*$ can be written uniquely as $x = u \cdot \pi^m$ for $u \in O^*$, $m \in \mathbb{Z}$.

(If $v(x) = m$, then $v(x \pi^{-m}) = 0$ so it is a unit.)
2.5.

If \(v \) is a discrete valuation, then \(\mathcal{O} \) is a PID with a unique maximal ideal; i.e. a discrete valuation ring.

The ideals are \(p^n \), for \(n \in \mathbb{Z} \), and we have

\[
K^x = (\mathfrak{m}) \times \mathcal{O}^x.
\]

(In fact, \(K^x = (\mathfrak{m}) \times \bigwedge^{n-1} \mathfrak{m}^x \times \bigwedge^1 \mathcal{U}^x \),

where \(\mathfrak{m} \) are roots of unity, \(\mathfrak{m}^x \) is the principal units, \(\mathcal{U} \)

We let \(\hat{\mathcal{O}} \) be the completion of \(\mathcal{O} \) w.r.t. \(\mathfrak{m} \).

Then the maximal ideal of \(\hat{\mathcal{O}} \) is \(\hat{p} \), and

\[
\hat{\mathcal{O}} / \hat{p}^n \cong \mathcal{O} / p^n \quad \text{for every } n \geq 1.
\]

Moreover, we have an isomorphism and homeomorphism

\[
\mathcal{O} \longrightarrow \lim_{n} \mathcal{O} / p^n.
\]

So, the question is:

Given \(K / \mathcal{O} \), can cook up valuations on \(K \).

Complete with respect to them. Get “local fields”.

Can take the opposite approach. Start with \(\mathbb{Q}_p \).

Consider an algebraic extension. Do we get the same?

e.g. \(\sqrt{-1} \) of \(\mathbb{Q}_7 \).

\(\mathbb{Q}_7(i) \). Is it complete?

Indeed, is it the completion of \(\mathbb{Q}(i) \)? Yup!

\(\mathcal{O} \longrightarrow \mathbb{Q}_7 \)

Goal: understand extensions of valuations.
13.1. Extensions of local fields.

Def. A field K is **local** if:
- it is complete w.r.t. a discrete valuation;
- it has a finite residue field.

Theorem. (N 2.5.2) These are precisely the finite extensions of \mathbb{Q}_p and $\mathbb{F}_p(C^1)$.

Theorem. They all satisfy Hensel's Lemma.
(See N 2.6, "Henselian fields").

Applications of Hensel.

Prop. We have $\mathbb{Q}_p \cong \mathbb{Z}_p^{1/p - 1}$ ($p - 1$ th roots of unity).

Proof. (\mathbb{Z}_p^{\times}) is an abelian group of size $p - 1$.
That means $a^{p - 1} \equiv 1 \mod p$ for all $a \in \mathbb{Z}_p^\times$.
So $x^{p - 1} - 1 \in \mathbb{Z}_p[x]$ splits completely in $\mathbb{F}_p[x]$.
By Hensel, it splits into distinct factors in $\mathbb{Z}_p[x]$ too.

Prop. Let K be complete w.r.t. monoch. 1. (e.g. $K = \mathbb{Q}_p$)
For every irreducible polynomial $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in K[x]$ with $a_0 a_n \neq 0$, one has
$$|f| = \max\{ |a_0|, |a_n| \}.$$
(Here $|f| = \max |a_i|$.)
In particular, writing \mathcal{O} for the valuation ring of K, $a_n = 1$ and $a_0 \in \mathcal{O}$ imply $f \in \mathcal{O}[x]$.
Proof. By multiplying through by an element of \(k \),
can assume \(f \in \mathcal{O}[x] \) and \(\|f\| = 1 \).

In the list \(a_0, a_1, a_2, \ldots \) let \(a_r \) be the first which has \(|a_r| = 1 \).

Then, mod \(\mathfrak{p} \) (\(\mathfrak{p} = \text{max ideal of } \mathcal{O} \)),

\[
f(x) \equiv a_r x^r + a_{r+1} x^{r+1} + \ldots + a_n x^n \mod \mathfrak{p}
\]

\[
\equiv x^r (a_r + a_{r+1} x + \ldots + a_n x^{n-r})
\]

If \(\max \{|a_0|, |a_n|\} < 1 \), this is a nontrivial factorization into coprime polynomials.

By Hensel it lifts from \(\mathcal{O}/\mathfrak{p} \) to \(\mathcal{O} \). **Contradiction**

Big Theorem. (4.8) Let \(K \) be complete w.r.t. \(\| \| \).

Let \(L/K \) be any algebraic extension. Then \(\| \| \) extends uniquely to \(L \) with

\[
\|a\| = \sqrt[n]{\text{N}_{L/K}(a)} \quad (n = [L:K] \text{ when } L/K \text{ finite})
\]

Then \(L \) is also complete.

Proof. Assume:
- \(\| \| \) is nonarchimedean (otherwise \(K \) is \(\mathbb{R} \) or \(\mathbb{C} \))
- \(L/K \) is finite. (Can assume WLOG: Prove for \(K(a) \),
take compositum over all \(a \in L \).)
3.3.

Notation: \(L = \langle \rangle \) (will prove \(\text{int} \) closure of \(\bigcirc \) in \(L \).
will prove: is valuation ring \(\text{of} \ L \).
\(K = \langle \rangle \) (valuation ring) \(\not\in \mathfrak{p} \) (unique max ideal).

Note. \(\bigcirc \) and \(\bigcirc \) are easy to confuse. Sorry.

Proof. (existence):

Let \(\bigcirc \) be \(\text{int} \) closure of \(\bigcirc \) in \(L \).

Claim: \(\bigcirc = \{ q \in L : N_{L/K}(q) \in \bigcirc \} \).

Proof of claim.

1. Given \(q \in \bigcirc \), satisfies a monic poly in \(\bigcirc \) norm is \(\pm (\text{its last coefficient})^m \) for some \(m \).

2. Given \(q \in L^* \) with \(N_{L/K}(q) \in \bigcirc \).

Let \(f(x) = x^d + a_{d-1}x^{d-1} + \ldots + a_0 \in K[x] \)

\(\text{min poly of} \ q. \)

Then \(N_{L/K}(q) = \pm q_0^m \), so \(|a_0| \leq 1 \) (i.e. \(q_0 \in \bigcirc \)).

Use Proposition 4.7: \(f(x) \in \bigcirc \)[x].

By def., \(q \in \bigcirc \).

Now define \(|a| = \sqrt[n]{|N_{L/K}(a)|} \). (Note: if \(\beta \in K \), then \(\sqrt[n]{|N_{L/K}(\beta)|} = |\beta| \).

Easy: \(|a + 1| = 0 \iff q = 0 \)

\(|a \beta| = |a| |\beta| \).

Want to check strong triangle inequality

\(|a + \beta| \leq \max \{|a|, |\beta|\} \).

Restriction by \(\bigcirc \):

Assume \(\text{WLOG} \ 1 \not\in \bigcirc \), divide by \(|\beta| \),

enough to check

\(|a + 1| \leq \max \{|a|, 1\} \).

i.e. \(|a + 1| \leq 1 \) for \(\text{exact values} \) if \(|a| \leq 1 \).
By claim, this reduces to \(q \in O \Rightarrow q + 1 \in O \). But this is trivial. Integral elt are a ring.

Therefore, \(\{q \} = \mathfrak{m}((N_{L/K}(q)) \) defines a valuation on \(L \) which agrees with old valuation on \(K \).

Moreover, \(O \) is the valuation ring by our claim.

Uniqueness. Suppose \(l \cdot l' \) is another elt w/ valuation ring \(O' \).

Let \(\mathfrak{p}, \mathfrak{p}' \): max ideals of \(O, O' \).

Claim. \(O \subseteq O' \).

Proof. Note \(O, O' \) are both in \(L \) (by construction).

Given \(a \in O \setminus O' \) with min poly

\[f(x) = x^d + a_d x^{d-1} + \ldots + a_0. \]

Then all the \(a \)'s are in \(O \), and \(a^{-1} \in \mathfrak{p}' \).

(because it is not in \(O' \))

Plug in \(a \).

\[q = q^d + a_d^{-1} q^{d-1} + \ldots + a_0 q^{-1}, \]

\[0 = 1 + a_d^{-1} q^{-1} + \ldots + a_0 q^{-d}. \]

This is in \(\mathfrak{p}' \), so \(1 \) is also, contradiction.

Thus, \(O \subseteq O' \), i.e. \(|q| \leq 1 \Rightarrow |q|' \leq 1 \).

By the approximation theorem, \(l \cdot l \) and \(l \cdot l' \) are equivalent, i.e. \(l \cdot l = (l \cdot l')^s \) for some \(s > 0 \).

Since they agree on \(K \), they are equal.
13.5. \(L \) is complete with respect to this valuation.

Proof omitted; see N. 2.4.9.

So, extend valuations from \(K \) to \(L \). \([L : K] = n \).

For absolute values, \(|a| = \sqrt[n]{N_{L/K}(a)} \).

In terms of (additive valuations),

a valuation \(v \) on \(K \) extends to a valuation \(w \) on \(L \) satisfying

\[
w(a) = \frac{1}{n} v(N_{L/K}(a)).
\]

Note also, if \(v \) is normalized s.t. \(v(K^\times) = \mathbb{Q} \), then \(\frac{1}{n} \mathbb{Z} \leq w(L^\times) \leq \mathbb{Z} \).

Example. Let \(\mathfrak{p} = 7, K = \mathbb{Q}_p, L = \mathbb{Q}_p(\sqrt{p}) \).

Then for \(a \in L \), \(|a| = \sqrt[n]{N_{L/K}(a)} \).

In particular, \(|\sqrt{p}| = \sqrt[n]{N_{L/K}(\sqrt{p})} \)

\[
= \sqrt[n]{\sqrt{p} \cdot (-\sqrt{p})} = \sqrt{1-p} = \sqrt{p}.
\]

The same calculation gives \(w(\sqrt{p}) = \frac{1}{2} \),

where \(w \) is the extended valuation.

Example. Let \(p = 7, K = \mathbb{Q}_p, L = \mathbb{Q}_p(\sqrt{3}) \).

(Check: 3 is not a quad. residue.)

Then \(N_{L/K}(a + b\sqrt{3}) = a^2 - 3b^2 \).

Check: If this is divisible by 7, it is divisible by 7^2.

Thus \(w(L) = \mathbb{Z} \).
3.6. **Definition.**

The index \([w(L^x) : v(K^x)]\) is called the **ramification index** of \(L/K\).

Write \(e(wlv)\).

Def. Given \(L/K\) with valuation rings \(O \mid \Lambda\),
max ideals \(P \mid \mathfrak{p}\).

Have residue fields \(\Lambda : = \Omega/P\)
\(\kappa : = \alpha/\mathfrak{p}\).

As before \(K \hookrightarrow \Lambda\) and \(\Lambda\) is a finite ext.

The degree \([\Lambda : \kappa]\) is the **inertia degree** of \(L/K\).

Write it \(f(wlv)\).

Theorem. If \(\mathfrak{p}\) \(L/K\) is finite separable, \(v\) is a
disc. valuation on \(K\), \(w\) extends it, then

\([L : K] = e(wlv) \cdot f(wlv)\).

(Ponder: where did the \(g\) go?)
Last time.

Suppose K is complete w.r.t. \mathfrak{m}_L.

L/K alg. extension.

Then L/K may be uniquely extended to L_1 with

$$|\alpha| = \sqrt{|N_{L/K}(\alpha)|}.$$

L is again complete w.r.t. \mathfrak{m}_L.

In terms of additive valuations,

get a valuation w prolonging the valuation ν on K,

with $w(\mathfrak{a}) = \frac{1}{n} \nu(N_{L/K}(\mathfrak{a}))$.

So,

$$\frac{1}{n} \nu(K^x) \cong w(L^x) \cong \nu(K^x).$$

Def. $e_w(\nu):= \left[\nu(L^x) : \nu(K^x)\right]$ is the **ramification index** of L/K (of $w|\nu$).

Let O and \mathfrak{o} be the valuation rings,

$\lambda := O/\mathfrak{m}_L$ and $x := O/\mathfrak{m}_K$ the residue class fields.

We have an injection $K \hookrightarrow \lambda$:

$$O/\mathfrak{m}_K \rightarrow O/\mathfrak{m}_L$$

$$x \rightarrow x.$$

Well defined because $\mathfrak{m}_K \cdot O \subseteq \mathfrak{m}_L$.

Injective because 1 is not in the kernel.

Def. $f(\nu) := [\lambda : x]$ is the **residue class degree**.
Let π and π' be prime elements of O and \mathfrak{p}. Then $w(L^x) = w(\pi) \cdot \mathbb{Z}$, $w(\mathfrak{p}^x) = w(\pi') \cdot \mathbb{Z}$.

$$e = [w(\pi) : w(\pi')] \cdot \mathbb{Z},$$

so that $w(\pi') = e \cdot w(\pi)$, i.e.

$$\pi = e \cdot \pi^e \text{ for some } \varepsilon \in O^x.$$

In particular, we see that $\mathfrak{p}^0 = \pi^0 = \pi^e \mathfrak{p}^e \mathfrak{p}^e = \mathfrak{p}^e$,

i.e. $\mathfrak{p} = \mathfrak{p}^e$.

Theorem. Assume L/K is finite separable and 1:1 discrete. Then $[L : K] = ef$.

Proof. (1) show $ef \leq [L : K]$.

Let w_1, \ldots, w_f be a basis for L/K. (i.e. they live in L^x)

\[w_1, \ldots, \pi^{e-1} \pi^e \ldots \pi^e \text{ represent } \pi \text{ representing all the cosets of } [w(L^x) : w(\mathfrak{p}^x)] .\]

Want to show the $w_j \cdot \pi^i$ are (1) linearly independent $/K$

(2) a basis of L/K.

To show (1), write

$$\sum_{i=0}^{e-1} \sum_{j=1}^f a_{ij} w_j \pi^i = 0 \quad a_{ij} \in \mathbb{K} .$$

If not all a_{ij} are 0, then some $s_i := \sum_{j=1}^f a_{ij} w_j$ is not zero.

(because the π^i are certainly linearly independent over K.)
4.3. Claim. If \(s_i \neq 0 \) then \(w(s_i) \in v(K^x) \).

Proof. Given \(\sum_{j \leq i} a_{ij} w_j = 0 \), divide by the \(a_{iv} \) of minimum value.

Get \(s_i' = \frac{s_i}{a_{iv}} = \sum_{j} a_{ij} \frac{w_j}{a_{iv}} \) These are in \(L \)

These are in \(\mathfrak{o} \subseteq K \).

The \(w_j \) represent a basis for \(\mathfrak{l} / \mathfrak{k} \).

Therefore, \(s_i' \) can only be \(0 \) (mod \(\mathfrak{p} \)) if all \(a_{ij} \) are \(0 \) (mod \(\mathfrak{p} \)).

But we divided by \(a_{iv} \) of min value, so \(a_{iv} = 1 \),

so \(s_i' \neq 0 \) (mod \(\mathfrak{p} \)) and so is a unit in \(\mathfrak{O} \).

This implies \(w(s_i) = w(a_{iv}) + v(K^x) \) (because \(a_{iv} \in K \)).

[Note: We're really using everything!]

Now, we had a sum \(O = \sum_{i=0}^{e-1} s_i \mathfrak{I}^i \).

Two summands must have the same valuation,
because \(w(x) \neq w(y) \Rightarrow w(x+y) = \min \{ w(x), w(y) \} \).

However, the \(s_i \) all have valuations in \(v(K^x) \)
the \(\mathfrak{I}^i \) all represent distinct cosets of

This is a contradiction.

Proves linear independence, i.e. \(ef \subseteq [L:K] \).
T4.9. (2). Need:

Nakayama's Lemma. Let A be a local ring with maximal ideal \(\mathfrak{m} \).

Let \(M \) be an \(A \)-module, \(N \subseteq M \) a submodule with \(M/N \) finitely generated.

Then, \(M = N + \mathfrak{m}M \rightarrow M = N \).
(Proof. Exercise)

To do (2), consider the \(A \)-module

\[
M := \sum_{i=0}^{e-1} \sum_{j=1}^{f} a_{w_j} T_i^j.
\]

Will argue that \(M = 0 \), i.e., \(\{w_j T_i^j\} \) are not only linearly dependent, but an integral basis for \(0\mathfrak{m} \).

Write \(N = \sum_{j=1}^{f} a_{w_j} \),

\[
M = N + T_1 N + T_1^2 N + \ldots + T_1^{e-1} N.
\]

Then we have \(0 = N + \mathfrak{m}N \).

Why? For \(\neq 0 \), look at \(a \) mod \(\mathfrak{m}T_1 \).

Get \(a_1 w_1 + \ldots + a_f w_f \) (mod \(\mathfrak{m}T_1 \)) for some \(a_i \neq 0 \).

Residue can be represented by sum of valuation \(\theta \), and all such elts. are spanned by a basis of \(\lambda : K \).
(In other words: \(w_1, \ldots, w_f \) are a basis for \(0/P \) over \(\mathfrak{m}/P \).

(\text{So: } a_i \text{ one only determined up to } \mathfrak{m}.)

So, \(0 = N + \mathfrak{m} = N + \mathfrak{m}(N + \mathfrak{m}O) = \ldots = N + T_1 N + \ldots + T_1^{e-1} N + T_1^e O \),

i.e., \(0 = M + P^e = M + \mathfrak{m}O \).

Now \(0 \mathfrak{m}O \) is finitely generated (has an integral basis), so Nakayama applies and \(0 \subset M \).
Def. \(L/K \) (finite ext. of \(@p \)) is \underline{unramified} if

\[
[L : K] = [\lambda : k],
\]
i.e. \(e(L/K) = 1 \).

An arbitrary algebraic extension \(L/K \) is unramified if it is a union of finite unramified extensions.

Prop. (7.2) Given \(L|k, k'||k \) inside a fixed alg closure \(F \). Then,

\[L|k \text{ unramified } \Rightarrow L \cdot k'||k \text{ unramified.} \]

Proof. Write \(L' = L \cdot k' \)

use the notation \(\theta, p, k, \theta', p', k', \theta, p, \lambda, \theta', p', \lambda' \).

Can argue just for finite extensions.

By the \underline{primitive element theorem} \(\lambda = k(\bar{\bar{a}}) \) for some \(a \in \theta \).

Write \(f(x) \in \theta[x] \text{ min. poly of } a \). \(\bar{f}(x) = \bar{f}(x) \text{ mod } p \in k(x) \).

Then

\[
[\lambda : k] \leq \deg(\bar{f}) = \deg(f) = [k(\bar{a}) : k] \leq [L : K] = [\lambda : k],
\]
so \(L = k(\bar{a}) \) and \(\bar{f} \) is the min. poly of \(\bar{a} \) over \(k \).

So \(L' = k'(\bar{a}) \).

Why is \(L'|k' \) unramified?

Let \(g(x) \in \theta' \cdot [x] \text{ min. poly of } a \text{ over } k' \).

\(\bar{g}(x) = g(x) \text{ mod } p' \in k'[x] \).

Note that \(\bar{g}(x) \) is a factor of \(\bar{f}(x) \).

By Hensel's Lemma \(\bar{g}(x) \) is irreducible .

(If it factored, would lift to a factorization of \(g(x) \).

So \([\lambda' : k'] \leq [L' : k] = \deg(g) = \deg(\bar{g}) = [k'(\bar{a}) : k'] \leq [\lambda' : k'] \).

So \([L' : k'] = [\lambda' : k'] \), \(L'|k' \) \underline{unramified}.
4.6. **Cor.**

If \(L' \mid K \) is an unramified extension and \(L \subseteq L' \), then \(L \mid K \) is also unramified.

Proof. By prop., \(L' \mid L \) is unramified.

Have \([L' : K] = [\lambda_{L'} : \kappa] \)
\[[L' : L] = [\lambda_{L'} : \lambda_L] \cdot \]

Since field degrees are multiplicative, \(L \mid K \) is ur. (i.e. \([L : K] = [\lambda_L : \kappa] \).

Cor. If \(L \) and \(L' \) are unramified over \(\kappa \), so is \(LL' \).

Proof. \(LL' \mid L \) is unramified, with
\[[\lambda_{L'} : \kappa] = [L' : K] \]
\[[\lambda_{LL'} : \lambda_{L'}] = [LL' : L'] \cdot \]
(Use: separability is transitive)

Def. Fix an algebraic closure \(\overline{K} \) of \(K \).

Then the composite of all unramified subextensions \(L \subseteq \overline{K} \) of \(K \) is the maximal unramified extension \(\overline{L} \) of \(K \).

Prop. (7.5) The residue class field of \(T \) is \(\overline{\kappa} \) (\(= \overline{\mathbb{F}_p} \)).

Moreover, \(v(T^\times) = v(K^\times) \).

Proof. See Neukirch, but this is not hard.

(Tame ramification: 7.6, 7.7, 7.8, 7.9, 7.10, 7.11)