4.1.
Recall, interested in binary quadratic forms \(ax^2 + bxy + cy^2 \) right action of \(\text{SU}_2(\mathbb{Z}) \)

\[(f \circ g)(x, y) = f(g(x, y)).\]

So \((f \circ (\begin{pmatrix} a & b \\ c & d \end{pmatrix}))(x, y) = f(ax + by, cx + dy).\)

Remark. Sometimes you see a left action

\[(g \circ f)(x, y) = f((x, y)g).\]

Basically, but not exactly, the same.

Also saw that

\[\text{Disc}(f \circ g) = (\det g)^2 \text{ Disc } (f).\]

Proposition. (Cox, 2.3)

A form \(f \) properly represents an integer \(m \) if and only if it is properly equivalent to the form \(mx^2 + bxy + cy^2 \) for some \(b, c \in \mathbb{Z} \).

Proof. "If" is obvious, \(b/c \) equiv forms represent same integers

Take \(x = 1, y = 0 \).

So, suppose \(f(p, q) = m \) where \(p \) and \(q \) are coprime.

We choose \(s, r \) with \(ps - qr = 1 \). Then,

\[f(px + ry, qx + sy) = f(p, q) x^2 + (\text{Blah}) xy + f(r, s) y^2\]

and so we win!
4.2.

Corollary. (Cox, 2.5)

Let \(D \) be an integer \(\equiv 0, 1 \pmod{4} \). Then \(m \) is an odd integer coprime to \(D \). Then \(m \) is properly represented by a primitive form of discriminant \(D \) if and only if \(D \) is a quadratic residue \(\pmod{m} \).

Proof. If \(m \) is properly represented, can assume \(f(x, y) = mx^2 + bxy + cy^2 \).

So \(D = b^2 - 4mc \equiv b^2 \pmod{m} \).

Conversely, suppose \(D \equiv b^2 \pmod{m} \).

Because \(m \) is odd, can assume \(D \) and \(b \) have same parity. (Replace \(k \) with \(b + m \))

Because \(D \equiv 0, 1 \pmod{4} \), \(D \equiv b^2 \pmod{4m} \).

So, \(D = b^2 - 4mc \) for some \(c \).

\(mx^2 + bxy + cy^2 \) represents \(m \) properly and has discriminant \(D \).

Also, coeff. are coprime because \((m, D) = 1 \).

Corollary. (Cox, 2.6)

Let \(n \) be an integer, \(p \) an odd prime. Then

\[
\left(\frac{-n}{p} \right) = 1 \quad \rightarrow \quad p \text{ is represented by some primitive form of discriminant } -4n.
\]

Fact. Any \(\mathcal{B} \& \mathcal{F} \) of disc \(-4 \) is equivalent to \(x^2 + y^2 \), (to be proved)

Cor. An odd prime \(p \) is a sum of two squares if and only if \(p \equiv 1 \pmod{4} \).

(!!!)
4.3.

Reduction theory of forms.

Def. A primitive pos. def. form $ax^2 + bxy + cy^2$ is reduced if

1. $|b| \leq a \leq c$,
2. $b \geq 0$ if either $|b| = a$ or $a = c$.

Thm. (Cox, 2.8) Every primitive positive definite form is properly equivalent to a unique reduced form.

Remarks.
1. The conditions for "reduced" define a fundamental domain for the action of $SL_2(\mathbb{Z})$ on binary quadratic forms.

Other examples: $kSL_2(\mathbb{Z})$ acting on $M = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \}$ by $(a, b) \cdot z = \frac{az + b}{c + z}$.

Closely related.

* Binary cubic forms. Hard to describe.
* Manjul on counting quartic or quintic forms.

2. Will easily show $a \leq \sqrt{-D} / 3$.

Quickly conclude that if D is fixed, only finitely many equivalence classes of discriminant D. And we can compute them.

3. Cool fact. $x^2 + x + 41$ is prime for $x = 0, 1, 2, 3, \ldots, 10$. Why?

4. Will use this to estimate # equiv classes with $|D| = x$.

5. $D > 0$ is harder. Will do it too.
Proof.

Step 1. Given a form, show prop. equiv to one with \(|b| \leq a \leq c \).

Among all forms in class, choose \(f = ax^2 + bxy + cy^2 \) with \(|b| \) minimized. Since positive definite, \(a, c \neq 0 \).

If \(a = |b| \), then

\[
g(x, y) = f(x + my, y) = ax^2 + b(2am + b)y + cy^2 = f(x, y).\]

If \(a < |b| \), choose \(m \) with \(|2am + b| < |b| \).

Contradiction!

If \(a = c \), swap \(x \) and \(y \):

\[
g(x, y) = f(-y, x).
\]

Get \(|b| \leq a \leq c \).

So: is reduced unless \(b < 0 \) and \(a = -b \) or \(a = c \).

\(a = -b \):

\[
ax^2 - axy + cy^2 \sim ax^2 + axy + (a + c)y^2
\]

(Cox is wrong?)

\(a = c \):

\[
ax^2 + bxy + ay^2 \sim ax^2 - bxy + ay^2
\]

by \((x, y) \sim (-y, x) \).

So: shows existence, now show uniqueness.

(not in Granville)
Lemma. If \(f(x, y) = ax^2 + bxy + cy^2 \) satisfies \(|b| \leq a \leq c\),
then \(f(x, y) \geq (a - |b| + c) \min(x^2, y^2) \).

(Take for granted, or exercise)

So: If \(xy \neq 0 \), \(f(x, y) = a - |b| + c \).
And, by assumption, \(a \leq c \), so \(a \) is the minimum value
\(c \) is the next value
properly rep'd.

Now, to show uniqueness:
Assume \(f(x, y) = ax^2 + bxy + cy^2 \) sat.
\(|b| < a < c \).
Then \(a < c < a - |b| + c \) are the three smallest
numbers properly rep'd by \(f(x, y) \).

If \(g(x, y) \) is another reduced form equiv. to it:

1. First coeff \(a \) must be the same.
2. First last coeff \(c \) must be the same.
(Some technical details: Last coeff can't be \(a \).
see Cox.)
3. Same discriminant, so \(b \) must be the same
up to \(\pm \).

Now, why one \(f(x, y) = ax^2 + bxy + cy^2 \)
\(g(x, y) = ax^2 - bxy + cy^2 \) inequiv?
Let \(g(x, y) = f(x + \beta y, \delta x + \delta y) \)
\(a = g(1, 0) = f(1, 0) \)
\(c = g(0, 1) = f(\beta, 0) \)
By min. considerations,
\((1, 0) = (0, 1) \)
\((\beta, 0) = (0, 1) \)
So \((\beta, 0) = (0, 1) \) of det. 1.
Finally: \(a = |b| \) or \(a = c \). Exercise...
\(\beta \) must be \(\pm 1 \).
Prop. If \(ax^2 + bx + cx^2 \) is reduced then \(3a^2 \leq -D \), i.e. \(a \leq \sqrt{-D/3} \).

Proof. \(-D = 4ac - b^2 \)
\[\geq 4a^2 - a^2 = 3a^2. \]

And \(|b| \leq a \).

This lets us enumerate classes of BQFs.
5.1. The class number.

From (4): Review def. of "reduced".
Main theorem.
Proof on 4.4.
Summarize 4.5.
Definitely do 4.6.

So do we have useful bounds on the coefficients?

$$|b| \leq \frac{8a}{3} \leq \sqrt{\frac{-D}{3}}.$$

Now, c can be big. Indeed, $x^2 + \frac{(-D)}{4}y^2$ is reduced.

But we do have a bound:

$$4ac = -D + b^2
\leq -D + a^2; \text{ so } c \leq \frac{-D}{4a} + \frac{a}{4}$$

$$\leq \frac{-D}{4} + \frac{1}{4} \sqrt{-\frac{D}{3}}.$$

Def. The class number $h(D)$ is the number of proper equivalence classes of IB&FS of discriminant D.

Theorem.

(1) $h(D) \neq 0 \iff D \equiv 0, 1 \pmod{4}$.

(2) For each negative D, $h(D)$ is finite and can be computed in $O(D)$ time.

(3) The IB&FS form a group. (Later)
5.2.

Proof. (2) follows from the fundamental domain and our bounds.

(1) \(b^2 - 4ac \equiv 0, 1 \pmod{4}\).

Conversely, if given \(D \equiv 0 \pmod{4}\), take

\[x^2 - \frac{D}{4}y^2 \]

given \(D \equiv 1 \pmod{4}\), take

\[x^2 + xy - \frac{D-1}{4}y^2 \]

Class number computations.

Ex. Compute \(h(-4)\).

Sol'n. Have \(1b|a| \leq a \leq \sqrt{\frac{4}{b}}\).

So: \(a = 1\), \(b = -1, 0, 1\).

(Note: \(-1\) because \(1b|a| = a\))

\[a = 1, b = 0 \Rightarrow 0^2 - 4c = -4 \Rightarrow c = 1.\]

\[a = 1, b = 1 \Rightarrow 1^2 - 4c = -4 \text{ (nope)}\]

So \(h(-4) = 1\).

We observe that \(h(D) \leq 10D\).

Why? Check \(a^2 \leq \sqrt{-\frac{D}{3}}\) and \(1b|a| \leq a\).

Then \(c\) is determined.

So, in fact,

\[h(D) \leq \left(\sqrt{-\frac{D}{3}}\right) \left(2\sqrt{-\frac{D}{3}} + 2\right)\]

\[= \frac{2}{3} \cdot 10D + \sqrt{\frac{10D}{3}}\]

which is less than \(10D\) except for \(D\) really small.
5.3.

Ex. Compute \(h(-23) \).

Have \(|b| \leq a \leq \sqrt{\frac{23}{3}} \) so \(a = 1 \) or \(2 \).

\(a = 1 : \ b = 0 \) or \(1 \).

\(b = 0 \Rightarrow -4c = -23 \) (no)

\(b = 1 \Rightarrow 1 - 4c = -23 \) (c = 6)

\(x^2 + xy + 6y^2 \)

\(a = 2 : \ b = -1, 0, 1, 1, 2 \)

\(b = -1 \Rightarrow 1 - 8c = -23 \), \(c = 3 \)

\(2x^2 - xy + 3y^2 \)

\(b = 0 \Rightarrow -8c = -23 \) (no)

\(b = 1 \Rightarrow 1 - 8c = -23 \)

\(2x^2 - xy + 3y^2 \)

\(b = 2 \Rightarrow 4 - 8c = -23 \) (no). So \(h(-23) = 3 \).

(Note: latter two are improperly equivalent)

Homework. Keep doing this until you get bored.

The \(D > 0 \) case.

Theorem. (Cox, 2.8) Any form of discriminant \(D > 0 \) is properly equivalent to \(ax^2 + bxy + cy^2 \) not a perfect square with

\(|b| \leq |a| \leq |c| \).

This implies \(|a| \leq \sqrt{\frac{D}{2}} \).

So still can compute class number.
6.1. Class numbers.

Review: Def. of reduced (4.3).

Bound on a (4.6).

Do computations on (5.2) and (5.3).

So now we understand how to compute.

Goals:

1. Understand this quantity for individual D and on average. For example, it is true that

$$\sum_{n \leq N} h(-n) = \frac{\pi}{18 \sqrt{3}} N^{3/2} - \frac{3}{2 \pi^2} N + O\left(\frac{29}{44} + \varepsilon\right),$$

and

$$h(-n) = \frac{\sqrt{n}}{\pi} \cdot L\left(1, \chi_{-n}\right) \text{ for } n > 1.$$

We will investigate these.

2. The set of equivalence classes forms a group. Why??

(a) Ugly classical formulas — see Cox’s book.

(b) Correspondence to quadratic fields.

(c) Bhargava’s boxes.

3. Counting of representations.

$$r(n) = \# \text{ of inequivalent representations of } n.$$

$$r(n) = \sum_{m | n} \left(\frac{d}{m}\right).$$

Explain why it’s true, relate to $L(s, \chi_d)$ and Dedekind zeta fns. (Need for DCNF; then G0V)

4. Relation to H.

5. Why $n^2 + n + 41$ is prime so often.
6.2.
Relation to \(\mathcal{H} \) first.

If \(g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \), \((f \circ g) \begin{pmatrix} u \\ v \end{pmatrix} = f \left(\gamma u + \delta v \right) \).

So, \(f \circ g \begin{pmatrix} u \\ v \end{pmatrix} = 0 \)
\[
\begin{pmatrix} \alpha \cdot u + \beta \cdot v \\ \gamma \cdot u + \delta \cdot v \end{pmatrix} = 0.
\]

i.e. \([u: v] \) is a root of \(f \circ g \)
\[
\begin{pmatrix} \alpha \cdot u + \beta \cdot v \\ \gamma \cdot u + \delta \cdot v \end{pmatrix} = 0.
\]

Set \(v = 1 \) and think of BQFs as being determined by their roots. We definite real quadratic.

i.e. \(u + \Pi' \) is a root of \(f \circ g \)
\[
\begin{pmatrix} \gamma \cdot u + \delta \cdot v \\ \gamma \cdot u + \delta \cdot v \end{pmatrix} = 0.
\]

\(\mathbb{Q} \cdot u + \Pi' \) is a root of \(f \).

Definitions. \(\mathcal{H} = \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} \).

\(\text{GL}_2(\mathbb{C}) \) acts on \(\mathcal{H} \cup \{0\} \) by \(\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \circ z = \frac{\alpha \cdot z + \beta}{\gamma \cdot z + \delta} \).

(Must check! Is a left (covariant) action.)

Prop. An \(\text{definite real} \) binary quadratic form has one of its roots in \(\mathcal{H} \cup \{0\} \).

Prop. If \(\Pi \) \(\text{f} \) has root \(z \in \Pi' \mathcal{C}(\mathbb{C}) \), then \(\Pi \) \(\text{can go back and forth} \).

\((f \circ g) \) has root \(f^{-1}(z) \).

Prop. A fundamental domain for the action of \(\text{GL}_2(\mathbb{C}) \) on \(\mathcal{H} \) is:

This is equivalent to being reduced in Gauss's sense.
Indeed, the roots of \(ax^2 + bx + c \) are
\[
\frac{-b \pm \sqrt{D}}{2a}.
\]

We have \(|\text{Re}(z)| \leq \frac{1}{2} \iff |b| \leq a\).

What about \(|z| \geq 1?\)

\[
\left| \frac{-b \pm \sqrt{D}}{2a} \right|^2 = \frac{b^2 - D}{4a^2} = \frac{b^2 - (b^2 - 4ac)}{4a^2} = \frac{c}{a}.
\]

So \(|z| \geq 1 \iff a \leq c \).

So the conditions exactly correspond.

The \(n^2 + n + 41 \) is prime result.

Theorem. If \(D < 0 \), then \(h(D) = 1 \iff D \in \{ -3, -4, -7, -8, -11, -14, -43, -67, -163 \} \).

and also \(-12, -16, -27, -28\) if one counts non-fundamental discs.

Proof. Easy homework exercise. [Much, much, MUCH harder homework exercise. (Warning: Gauss, Heilbronn, Siegel, etc. couldn't do it)]

Rabinowicz's Theorem. Let \(A \geq 2 \) be an integer. Then \(n^2 + n + A \) is prime for \(0 \leq n \leq A - 2 \) if and only if \(h(1 - dA) = 1 \).
7.1. Counting and representation theorems.

The general BQF is

\[ax^2 + bxy + cy^2. \]

Two questions:

1. BQFs form a lattice. \((a, b, c)\)
 How many equiv classes are there with \(|D| < K|\)?
 (Gauss, Mertens, Siegel)

2. Pick \(a, b, c\) and plug in \(x, y\).
 How many \(D\) are represented by a fixed \(ax^2 + bxy + cy^2\) as \(x, y\) vary?

Use CON to answer both. (2) leads to a formula for \(h(D)\) (for \(D < 0\)).

(1) we can straight out do but is not so easy.

(2) — we need representation theorems.

Recall. Prop. (Cox 2.5) \(D \equiv 0, 1 \pmod{4}\), \(m\) odd integer.

Then \(m\) is properly rep'd by a form of disc \(D\)

\[D \] is a quadratic residue \((\mod{4m})\).

Sketch of proof.

\(m\) properly rep'd by \(f\)

\(f\) equiv. to \(mx^2 + bxy + cy^2\) with \(D = b^2 - 4mc\)

\(D \equiv b^2 \pmod{4m}\).

Application. (Rebinovitch) Let \(A > 2\) integer. Then,

\(n^2 + n + A\) is prime for \(0 \leq n < A - 2\) iff

\(h(1 - 4A) = 1\).
Proof. Suppose $\omega(d) = 1$ with $d = 1 - 4A$.

Then $x^2 + xy + Ay^2$ only BQF of disc d, up to equivalence.

Suppose $m = n^2 + u + A$ composite for some $u \in [0, A - 2]$.

Then:
* m has a prime factor $p \leq \sqrt{n^2 + u + A} < A$
* d is a square mod $4m$, hence mod $4p$, and so p is properly represented by a form of disc d, hence by $x^2 + xy + Ay^2$.

\[4p = 4u^2 + 4uv + 4Av^2 \]
\[= (2u + v)^2 + (4A - 1)v^2 < 4A - 1 \]
(because $p < A$).

So $v = 0$, so $4p = 4u^2$... no. we lose.

Other way: See Granville's notes.

This is really nice.
Now. Beef up the representation theorem.

Notation

Definition. An integer D is a **discriminant** if $D \equiv 0, 1 \pmod{4}$

D is a **fundamental discriminant** if in addition
* $p^2 + D$ for any $p > 2$
* if $4 \mid D$ then $D \equiv 2, 3 \pmod{4}$.

Prop. 12.31. If \(D \) is a fundamental discriminant then all forms of discriminant \(D \) are primitive.

Proof. Suppose the contrary,

Given a form \((pa) x^2 + (pb) xy + (pc) y^2 \).

It has discriminant \(p^2(b^2 - 4ac) \).

Cannot have \(p > 2 \) by definition.

Moreover, \(p = 2 \) is impossible as \(b^2 - 4ac \equiv 0, 1 \pmod{4} \).

The converse is also true. If \(D \) is not fundamental, use the above to cook up an imprimitive form.

Ex. (uses alg. NT)

1. The fundamental discriminants are 0, 1 and the discriminants of quadratic fields.

2. (Better) (Bhargava, HCL I) (to be discussed!) The fundamental discriminants are precisely the discriminants of maximal quadratic rings.

If \(D \equiv 0 \pmod{4} \), associate \(\mathbb{Z}[x]/(x^2 - \frac{D}{4}) \).

If \(D \equiv 1 \pmod{4} \), associate \(\mathbb{Z}[x]/(x^2 + x + \frac{1 - D}{4}) \).

So for \(D = 1 \), get \(\mathbb{Z}[x]/(x^2 + x) \equiv \mathbb{Z} \oplus \mathbb{Z} \).

For \(D = 0 \), get \(\mathbb{Z}[x]/(x^2) \).

The "quadratic fields" are \(\mathbb{Q} \oplus \mathbb{Q} \) and \(\mathbb{Q}(x)/(x^2) \).
7.4. Automorphisms of quadratic forms.

Definition. An automorphism of a quadratic form is a change of variables (i.e., an elt. of $\mathrm{SL}_2(\mathbb{Z})$) mapping f to itself.

Ex. Compute the automorphism group of $x^2 + y^2$.

Sol'n. Suppose $(x^2 + y^2) \circ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = x^2 + y^2$.

\[
(x^2 + y^2) \circ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = (\alpha x + \beta y)^2 + (\gamma x + \delta y)^2
\]

\[
= [\alpha^2 + \gamma^2] x^2 + [2\alpha \beta + 2\gamma \delta] xy
\]

\[
+ [\beta^2 + \delta^2] y^2.
\]

Case 1. $\alpha = \pm 1$.

Then $\gamma = 0$ and $\delta = \pm 1$, $\beta = 0$ by $(\alpha \beta \gamma \delta) \in \mathrm{SL}_2(\mathbb{Z})$.

So $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

Case 2. $\gamma = \pm 1$.

Then $\alpha = 0$, $\delta = 0$, $\beta = \pm 1$.

Get $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ or $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

So $|\text{Aut}(x^2 + y^2)| = 4$ and $\text{Aut}(x^2 + y^2) \cong \mathbb{Z}_4$.

Note. This group is naturally isomorphic to $\mathbb{Z}[i]$, $\{1, i, -1, -i\}$.

$(0, -1) \in \mathrm{SO}(2)$ is counter-clockwise rotation in \mathbb{R}^2 by 90°.

$\mathbb{R}^2 \cong \mathbb{C}$ as real vector spaces.

This rotation is multiplication by i.
Automorphisms of quadratic forms.

Review def., result of computation on 7.4.
Prop. If two quadratic forms are equivalent then their automorphism groups are isomorphic and indeed conjugate in $\text{SL}_2(\mathbb{Z})$.

Proof. If $f' = f \circ g$, then

$$h \in \text{Aut}(f') \implies f' \circ h = f' \circ f \circ g \circ h = f \circ g \circ h = f \circ g \circ g^{-1} = f \implies ghg^{-1} \in \text{Aut}(f).$$

So, $\text{Aut}(f') = g \cdot \text{Aut}(f) \cdot g^{-1}$.

(Also note, $(ghg^{-1})(gh'g^{-1}) = ghg^{-1}$ so RHS is a group isomorphic to $\text{Aut}(f')$.)

Remark: This principle is extremely familiar, master it!

Prop. If f is a primitive quadratic form of disc $D < 0$, then

$$|\text{Aut}(f)| = \begin{cases} 4 & \text{if } D = -4 \ (\text{proved above}) \\ 2 & \text{if } D = -3 \ (\text{homework!!}) \\ 2 & \text{if } D = -4. \end{cases}$$

Isomorphic to the unit group of the ring of integers of $\mathbb{Q}(\sqrt{D})$.

If $D > 0$ then $\text{Aut}(f)$ is infinite.

Example: Look at $x^2 - 2y^2$ of discriminant δ.

Ex. (1. easy) Verify that $\begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \in \text{Aut}(f)$ and is of infinite order.

Hints. $x^2 - 2y^2 = (x - \sqrt{2}y)(x + \sqrt{2}y)$ and $(\sqrt{2} - 1)(\sqrt{2} + 1) = 1$.
The representation theorem.

Let \(r_D(n) := \# \) representations of \(n \) by all \(\mathbb{Q} \) of disc \(D \), up to equivalence.

Proved before: \(r_D(n) > 0 \quad \Rightarrow \quad n \equiv D \mod 4 \).

Theorem. \(r_D(n) = \sum_{m | n} \left(\frac{D}{m} \right) \).

Note. We only defined \(\left(\frac{D}{m} \right) \) for odd prime \(m \).

Define \(\left(\frac{D}{2} \right) = \begin{cases} 0 & \text{if } D \text{ is even} \\ 1 & \text{if } D \equiv 1 \mod 8 \\ -1 & \text{if } D \equiv 3, 5 \mod 8 \end{cases} \)

(2 ram in \(\mathbb{Q}(\sqrt{D}) \))

(2 splits in \(\mathbb{Q}(\sqrt{D}) \))

(2 inert in \(\mathbb{Q}(\sqrt{D}) \))

and \(\left(\frac{D}{m \cdot m'} \right) = \left(\frac{D}{m} \right) \left(\frac{D}{m'} \right) \) for all \(m, m' \).

This defines \(\left(\frac{D}{m} \right) \) for all positive integers \(m \), and is periodic in the top.

Analytic number theory lemma.

\[
\sum_{m | n} \left(\frac{D}{m} \right) = \prod_{p | n} \left(1 + \left(\frac{D}{p} \right) + \left(\frac{D}{p^2} \right) + \cdots + \left(\frac{D}{p^e} \right) \right).
\]

Proof. Follow the right side!

Example. Suppose \(n \) is coprime to \(D \) and squarefree.

Then, \(r_D(n) = \prod_{p | n} \left(1 + \left(\frac{D}{p} \right) \right) = 2^{ω(n)} \) \(ω(n) \) *dist prime factors:

\[
= \begin{cases} 2 & \text{if } D \text{ is a residue mod } p, \\ 0 & \text{otherwise} \end{cases}
\]
8.4. Example. Let \(D = -4 \).

Then \(r_{-4}(1) = 1 \). \((1^2 + 0^2, 1^2 + 0^2, 0^2 + 1^2, 0^2 + (-1)^2)\)
\(r_{-4}(5) = 2 \). \((1^2 + 2^2, 1^2 + 2^2)\)
\((1^2 + 2^2, 2^2 + 2^2)\), (backwards).
\(r_{-4}(2) = 1 \). (Note: \((-\frac{4}{2}) = 0\).)

Recall that because \(|\text{Aut}(x^2 + y^2)| = 4 \), there are 4 equivalent relations for each.

Example. \(D = -15 \).

\[\frac{x^2 + y^2}{2} 4 \quad \frac{x^2 + xy + 4y^2}{2} \quad \frac{2x^2 + xy + 2y^2}{2} \]

\(\left(\frac{-15}{13} \right) = 1 \), so \(r_{-15}(13) = 2 \). \#1: \(x = 1, y = -3 \)
\(x = -1, y = 3 \)
\(x = -3, y = 1 \)
\(x = 3, y = -1 \).
These are two equivalent classes.

Similarly, \(\left(\frac{-15}{19} \right) = 3 \), so \(r_{-15}(19) = 2 \). rep'd by first form only.

Two ways to prove this.
1. Correspondence to ideals.
2. Work with binary quadratic forms directly.

Proofs of (2).
A bit messy. See Cox, ex. 2.20.
For \(4 \nmid D \), and \(n \) odd. (Warning: Cox uses different letters).

(a) The number of solutions to \(x^2 \equiv D \pmod{n} \)
is \(\prod_{p \mid n} \left(1 + \left(\frac{D}{p}\right)\right) \).
9.1. Dirichlet’s class number formula.
Suppose \(d \) is fundamental.

Theorem. Let \(L(1, \chi_d) := \sum_{n} \left(\frac{d}{n} \right) \cdot \frac{1}{n} \).

Then, \(h(d) = \frac{w}{2\pi} \cdot |d|^{1/2} \cdot L(1, \chi_d) \),

where \(w = \begin{cases}
2 & \text{if } d < -4 \\
1 & \text{if } d = -4 \\
6 & \text{if } d = -3
\end{cases} \).

Examples.

\[d = -4: \]
\[h(-4) = \frac{4}{2\pi} \cdot \sqrt{4} \cdot \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots \right) \]
\[= \frac{4 \cdot 2}{2\pi} \cdot \frac{\pi}{4} = 1. \]

\[h(-3) = \frac{6}{2\pi} \cdot \sqrt{3} \left(1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{5} + \frac{1}{7} - \frac{1}{8} \ldots \right) \]
\[= \frac{6 \sqrt{3}}{\pi} \cdot \frac{\pi}{3 \sqrt{3}} = 1. \]

\[h(-23) = \frac{2}{2\pi} \cdot \sqrt{23} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} - \frac{1}{7} + \ldots \right) \]
\[= \frac{\sqrt{23}}{\pi} \left(\frac{3\pi}{\sqrt{23}} \right). \]

Consequences.

1. Since \(\left(\frac{d}{n} \right) \) is equally likely to be 0 or 1, expect \(h(d) = \frac{\sqrt{|d|}}{\pi} \) on average.
9.2. Question: What is $\sum_{-d < x} h(d)$ asymptotically?

$$\sum_{-d < x} \frac{\sqrt{|d|}}{\pi} \sim \frac{3}{\pi^2} \int_{0}^{x} \frac{1}{\pi t^{1/2}} dt = \frac{2}{\pi^2} x^{3/2}.$$

This is not correct.

We also have

$$\sum_{-d < x} h(-d) = \# \{ (a, b, c) : b^2 - 4ac \in [-x, 0], \text{satisfy inequalities for being reduced, b}^2 - 4ac \text{ is fundamental} \}.$$

(2) $L(1, Xd)$ is easy to bound from above, so we can prove $h(d) < \sqrt{|d|} \log |d|$.

(Will prove this directly.)

(3) $L(1, Xd) \neq 0$.

This proves, e.g. half of primes are $\equiv 1 \pmod{4}$.

half one $\equiv 3 \pmod{4}$.

Note: A similar formula holds for $d > 0$ also. It is harder because there is a harder GON problem to solve. We will do this in detail.

Hinges on the theorem that

\[r_D(n) = \sum_{m|n} \left(\frac{D}{m} \right) \]

Lemma. We have [explain "\(\prod p^{e_p} \ln n \)]

\[\sum_{m|n} \left(\frac{D}{m} \right) = \prod_{p|n} \left(1 + \left(\frac{D}{p} \right) \right) + \left(\frac{D}{p^2} \right) + \ldots + \left(\frac{D}{p^{e_p}} \right) \]

Proof. Foil the right side.

In particular, if \(n \) is coprime to \(D \) and squarefree,

\[r_D(n) = \prod_{p|n} \left(1 + \left(\frac{D}{p} \right) \right) = \begin{cases} 2^{\omega(n)} \text{ if } D \text{ is a residue } \mod n \\ 0 \text{ if } \text{D is not a residue } \mod n \end{cases} \]

\(\omega(n) \): # of distinct prime divisors
Prop. If \(d < 0 \) then

\[
h(d) \ll |d| \log |d|.
\]

Proof. The key identity is that, for a fixed form \(f = ax^2 + bxy + cy^2 \),

\[
\sum_{\substack{n \leq N \atop 0 \leq f(x,y) \leq N}} \frac{1}{w} = \frac{1}{w} \sum_{x,y \in \mathbb{Z}} \frac{1}{w} \quad \sum_{0 < f(x,y) \leq N}
\]

where \(w = \begin{cases} 2 & \text{if } \text{Disc}(f) < -4 \\ 4 & \text{if } \text{Disc}(f) = -4 \\ 6 & \text{if } \text{Disc}(f) = -3 \end{cases} \).

This is obvious. The proof is by staring at it.

That said, \(w \) gives the number of equivalent representations by \(f \), so you do need to prove that if \(g \) is a nontrivial automorphism of \(f \), then \(g \left[\begin{array} { c } { x } \\ y \end{array} \right] \neq \left[\begin{array} { c } { x } \\ y \end{array} \right] \) for \(\left[\begin{array} { c } { x } \\ y \end{array} \right] \neq \left[\begin{array} { c } { 0 } \\ 0 \end{array} \right] \).

For \(\text{Disc}(f) < -4 \), \(\text{Aut}(f) \cong \{ (1,0), (-1,0) \} \).

For \(\text{Disc}(f) = -4, -3 \), it's obvious.

For \(\text{Disc}(f) = -4, -3 \), just check it.

Prop. If \(f \) is positive definite, then

\[
\sum_{x,y \in \mathbb{Z} \atop 0 \leq f(x,y) \leq N} 1 = \frac{2\pi N}{|1d|} + o(\sqrt{N}).
\]

Now why is this interesting?

\[
\sum_{\text{disc } D \leq N} \sum_{f \in \text{disc } D} f(n) = h(D) \left(\frac{2\pi N}{|1d|} + o(\sqrt{N}) \right).
\]
Therefore, for any N,

$$\sum_{n \leq N} r_D(n) = \sum_{n \in \mathbb{N}} \sum_{f \text{ f of disc } D} r_f(n) = h(D) \left(\frac{2\pi N}{\sqrt{|D|}} + o(\sqrt{N}) \right).$$

Simultaneously,

$$\sum_{n \leq N} r_D(n) = \sum_{n \leq N} \sum_{m|n} \left(\frac{D}{m} \right) = \sum_{m \leq N} \left(\frac{D}{m} \right) \sum_{n \leq N} \frac{1}{m|n}$$

 cheating!!!! come back and fix

$$= \sum_{m \leq N} \left(\frac{D}{m} \right) \left\lfloor \frac{N}{m} \right\rfloor$$

$$= \sum_{m \leq N} \left(\frac{D}{m} \right) \frac{N}{m}$$

$$= N \cdot \sum_{m \leq N} \left(\frac{D}{m} \right) \cdot \frac{1}{m}.$$

Now, because $\sum_{m} \left(\frac{D}{m} \right) \cdot \frac{1}{m}$ is convergent, this is

$$N \cdot \left(L(1+D) + o(1) \right).$$

So,

$$N \left(L(1+D) + o(1) \right) = \frac{2\pi N}{\sqrt{|D|}} + o(\sqrt{N})$$

$$= N \left(\frac{2\pi h(D)}{\sqrt{|D|}} + o(1) \right).$$

So,

$$L(1+D) = \frac{2\pi h(D)}{\sqrt{|D|}}.$$
4.6. Being more careful:

For any A and B we have $|\sum_{A \leq m \leq B} (\frac{D}{m})| \leq 1D$.

So, for any k,

$$\sum_{m \leq N} \left(\frac{D}{m} \right) \left\lfloor \frac{N}{m} \right\rfloor = \sum_{m \leq \frac{N}{K}} \left(\frac{D}{m} \right) \left\lfloor \frac{N}{m} \right\rfloor + \sum_{\frac{N}{K} < m \leq N} \left(\frac{D}{m} \right) \left\lfloor \frac{N}{m} \right\rfloor$$

$$= \sum_{m \leq \frac{N}{K}} \left(\frac{D}{m} \right) \cdot \frac{1}{m} + O\left(\frac{N}{K} \right) + \sum_{r=1}^{K} \sum_{\frac{N}{K} < m \leq \frac{N}{r}} \left(\frac{D}{m} \right)$$

$$= \sum_{m \leq \frac{N}{K}} \left(\frac{D}{m} \right) \cdot \frac{1}{m} + O\left(\frac{N}{K} \right) + O\left(K|1D| \right)$$

Choose $K = \sqrt{N/|1D|}$, get

$$\sum_{m \leq N} \left(\frac{D}{m} \right) \left\lfloor \frac{N}{m} \right\rfloor = \sum_{m \leq \frac{N}{K}} \left(\frac{D}{m} \right) \cdot \frac{1}{m} + O\left(\sqrt{N|1D|} \right)$$

This is much better.

This is still $N \cdot (L(1, X_0) + o(1))$.
10.1. Real quadratic forms

We are now interested in indefinite quadratic forms
\[ax^2 + bxy + cy^2, \quad D > 0. \]

Fact. If \(D > 0 \) it is indefinite and has two real roots \([x : y]\).
(Do it by pure thought!)

Gauss. Any such form is equivalent to a reduced form satisfying
\[0 < \sqrt{D} - b < 2|a| < \sqrt{D} + b. \]

[A. What word is missing?]

Cor. If \(D > 0 \) then \(h(D) \) is finite.

Proof. We have \(b < \sqrt{D} \), and \(|a| < 2\sqrt{D} \).
\(c \) is determined by \(a \) and \(b \).

So \(h(D) < (\sqrt{D} + 1)(4\sqrt{D} + 1) \ll D \).

Consider the roots \(p_1 = \frac{-b + \sqrt{D}}{2a}, \quad p_2 = \frac{-b - \sqrt{D}}{2a} \).

One is between 0 and 1 and the other is less than -1.

Reduction theory.

Def. \(ax^2 + bxy + cy^2 \), \(cx^2 + b'xy + c'y^2 \) are neighbors if they have the same discriminant and \(b \equiv -b' \pmod{2c} \).

In this case, \(cx^2 + b'xy + c'y^2 = (ax^2 + bxy + cy^2) \begin{bmatrix} 0 & -1 \\ 1 & \frac{b + b'}{2c} \end{bmatrix} \).
10.2.

So, given $ax^2 + bxy + cy^2$.

Let b'_0 be the least residue in absolute value of $-b \pmod{2c}$ with $|b'_0| \leq c$.

- If $|b'_0| > \sqrt{D}$ then let $b' = b'_0$.

 We have $0 < (b')^2 - D \leq c^2 - D$.

 So $|c'| = \frac{(b')^2 - D}{4|c|} < \frac{|c|}{4}$. (Decreased $|c|$)

- If $|b'_0| \leq \sqrt{D}$, choose $b' \equiv -b \pmod{2c}$ so b' as large as possible s.t. $|b'| < \sqrt{D}$.

 We have $-D = (b')^2 - D = 4c c' < 0$.

 If $2|c| > \sqrt{D}$ then $|c'| \leq \frac{|D|}{4c} < |c|$.

In case we hit one of the cases, $2|c| \leq \sqrt{D}$:

$\sqrt{D} = 2|c|$ and $\sqrt{D} - 2|c| \leq |b'| < \sqrt{D}$.

So: $0 < \sqrt{D} - |b'| \leq 2|c| < \sqrt{D} + |b'|$.

Idea: Keep reducing a and c until we got suit reduced.

Note: Don't have uniqueness, get a cycle (see Grenville).
10.3. The automorphs.

Def. Pell's equation is $v^2 - Dw^2 = \pm 4$.

Note: if D is even, so is v, can rewrite
$$(\frac{v}{2})^2 - (\frac{D}{4})w^2 = \pm 1.$$

Example. Let $D = 8$. $v^2 - 8w^2 = \pm 4$.

A solution is $v = 2, w = 1$.

Rewrite this as $(v')^2 - 2w^2 = \pm 1$ with $v' = \frac{v}{2}$,

$$[v' - \sqrt{2}w][v' + \sqrt{2}w] = \pm 1.$$

$(1 - \sqrt{2})(1 + \sqrt{2}) = 1$,
and $(1 - \sqrt{2})^k(1 + \sqrt{2})^k = 1$ for any k.

Thus, Pell's equation has a solution in \mathbb{Z}.

Cor. It has infinitely many.

Case 1. $4 | D$. As above. $(v')^2 - \frac{D}{4}w^2 = \pm 1$

$$(v' - \frac{\sqrt{D}}{2}w)(v' + \frac{\sqrt{D}}{2}w)$$

Take kth powers to get infinitely many solutions.

Case 2. $4 \nmid D$. Write $(v')^2 - D(w')^2 = \pm 1$ with

$v' = \frac{v}{2}, w' = \frac{w}{2}$

both half integers.

Either both or neither are in \mathbb{Z}.

If integers, do as above.

If half,

$$(v' + \sqrt{D}w')^2 = [v'^2 + Dw'^2] + \sqrt{D} \cdot 2v'w'.$$

Check: Because $D \equiv 1 \mod 4$, both of above are half integers.

(Not $\frac{1}{4}$-integers).
10.4. Exercise. The automorphisms of a form are all given by
\[\begin{bmatrix} \frac{1}{2}(u-vu) & -cu \\ au & \frac{1}{2}(u+vu) \end{bmatrix} \]
with \(u^2 - au^2 = +q \). \((-q\) gives \(\det = -1 \).)

Simple exercise. Check that this gives an automorphism, and that squaring this matrix preserves this property.

Better exercise. Factor \(ax^2 + bxy + cy^2 = a(x - \Theta y)(x - \Theta' y) \),
\[\Theta = \frac{-b + \sqrt{D}}{2a}, \]
and check that our automorphism corresponds to
\[x' - \Theta y' = \frac{1}{2}(u \sqrt{D})(x' - \Theta' y) \]
\[x' + \Theta y' = \frac{1}{2}(+u \sqrt{D})(x' + \Theta' y). \]

Definitions.
The fundamental unit \(\epsilon_B := \frac{u_0 + \sqrt{D}}{2} \) is the minimal such expression which is \(> 1 \) and of norm \(\pm 1 \).

Here the norm is \(\epsilon_B \cdot \epsilon_B = \frac{u_0^2 - Dw_0^2}{4} \).

So corresponds to Pell’s equation.

Prop. All solutions are \(\pm \epsilon_B \).

Def. Let \(\epsilon_B^+ \) be the smallest unit \(> 1 \) with norm 1.

So, \(\epsilon_B^+ = \epsilon_B \) or \(\epsilon_B^2 \), depending on whether \(N(\epsilon_B) = 1 \) or \(-1\).
Consider the expression \(\left| \frac{x - \Theta y}{x - \Theta'y} \right| \) for given \(x \) and \(y \).

If we change variables, \(\begin{bmatrix} x' \\ y' \end{bmatrix} = g \cdot \begin{bmatrix} x \\ y \end{bmatrix} \), then

\[
\left| \frac{x' - \Theta y'}{y' - \Theta'y} \right| = \left| \frac{(\xi_D)^k (x - \Theta y)}{(\xi_D)^{-k} (x - \Theta y)} \right| = (\xi_D)^k \cdot \left| \frac{x - \Theta y}{y' - \Theta'y} \right|
\]

Therefore, there is a unique \(k \) for which this quantity is between 1 and \((\xi_D)^2\).

Choose where \(x - \Theta y > 0 \) (by replacing \(x, y \) with \(-x, -y \) if nec.)

So: We want to count \(\sum_{n \in \mathbb{N}} r_D(n) \).

This is still equal to \(N \cdot (L(1, \xi_D) + o(1)) \) for the same reason as before.

So we need to count, for each fixed value \(\xi \), how many integer points \((x, y)\) there are with:

\(0 < ax^2 + bxy + cy^2 \leq N, \)

\(x - \Theta y > 0, \)

\(\left| \frac{x - \Theta y}{x - \Theta'y} \right| \in \left[1, (\xi_D)^2 \right). \)

Counting lattice points in a hyperbola.
E1.1.

Def. A quadratic field is

\[\mathbb{Q}(\sqrt{d}) = \{ a + b \sqrt{d} : a, b \in \mathbb{Q} \} . \]

Its ring of integers is

\[\mathcal{O} = \left\{ \frac{a + b \sqrt{d}}{2} : a, b \in \mathbb{Z}, a \text{ and } b \text{ have the same parity} \right\} \]

if \(d \equiv 2, 3 \pmod{4} \)

\[\mathcal{O} = \left\{ x \in \mathbb{Q}(\sqrt{d}) : x \text{ satisfies a monic poly. with coefficients in } \mathbb{Z} \right\} \]

is maximal f.g. subring of \(\mathbb{Q}(\sqrt{d}) \).

Its discriminant is \(\text{disc}(\mathcal{O}) = \text{det} \begin{vmatrix} 1 & \sqrt{d} \\ 1 & -\sqrt{d} \end{vmatrix} = 4d \)

or \(\text{det} \begin{vmatrix} \frac{1 + \sqrt{d}}{2} \\ \frac{1 - \sqrt{d}}{2} \end{vmatrix} = \sqrt{d} \)

for squarefree \(d \).

So \(\text{Disc}(\mathcal{O}) = \text{Disc}(\mathbb{Q}(\sqrt{d})) = \begin{cases} d & \text{if } d \equiv 1 \pmod{4} \\ 4d & \text{if } d \equiv 2, 3 \pmod{4} \end{cases} \)

Prop. The set of quadratic fields is in bijection with the set of fundamental discriminants, other than 1.

Notation. Let \(K \) be a \(\mathbb{Q} \)- and \(\mathcal{O} \) its ring of integers.

Thm. \(\mathcal{O} \) admits unique factorization of ideals into prime ideals.

If \(p \) is a prime of \(\mathcal{O} \), then \(p \mathcal{O}_K \) is:

- prime in \(\mathcal{O} \) (inert)
- \(p \mathcal{O}_K \) in \(\mathcal{O} \) (split)
- or \(p^2 \) in \(\mathcal{O} \) (ramified)
Def. A fractional ideal of \mathcal{O} is an \mathcal{O}-submodule of K.

It is principal if it is $x \cdot \mathcal{O}$ for some $x \in K$.

Both are groups under multiplication, $I(K)$ and $P(K)$.

Def. The class group $\text{Cl}(K) = I(K) / P(K)$.

Units. Let \mathcal{O}^\times be the group of units.

Then $|\mathcal{O}^\times| = \begin{cases} 6 & \text{if } K = \mathbb{Q}(\sqrt{-3}) \\ 4 & \text{if } K = \mathbb{Q}(\sqrt{-4}) \\ 2 & \text{if } K = \mathbb{Q}(\sqrt{-D}), \, D \leq 0 \\ \infty & \text{if } D > 0 \end{cases}$.

Theorem. If K is a (the) quadratic field of discriminant D, then

$$\text{Cl}(K) \cong \text{Cl}(D).$$

Proof. (Sketch. See Cox, 5.30, 7.7)

Construct a map

$$\text{BQFs} \rightarrow \text{Ideals of } \mathcal{O} :$$

$$ax^2 + bxy + cy^2 \rightarrow \left[a, \frac{-b + \sqrt{D}}{2} \right]$$

$$= a \cdot \left[1, \frac{-b + \sqrt{D}}{2a} \right].$$

In other words:

$$a(x + \theta y)(x + \theta' y) \rightarrow a \left[1, \theta \right].$$
Now, let \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \) act on \(ax^2 + bxy + cy^2 \).

Get
\[
\begin{align*}
&= a \left([q + x \theta] y + [p + y \theta] y \right) \cdot \text{conj}
\end{align*}
\]
\[
= a \left([q + x \theta] y + \frac{p + y \theta}{q + y \theta} y \right) \cdot \text{conj}
\]
\[
= a \cdot \left(q + x \theta \right) \left(1, \frac{p + y \theta}{q + y \theta} \right)
\]
\[
= a \left[\begin{array}{c} q + x \theta \\ \frac{p + y \theta}{q + y \theta} \end{array} \right].
\]

So maps to
\[
\begin{align*}
&= a \cdot \left(q + y \theta, \frac{p + y \theta}{q + y \theta} \right) \cdot \text{conj}
\end{align*}
\]
\[
= a \cdot \left[1, \theta \right] \left[\begin{array}{c} q \\ \frac{p + y \theta}{q + y \theta} \end{array} \right].
\]

We wrote an ideal of \(O \) in terms of its \(\mathcal{L} \)-basis which we simply permuted.

So it's well defined.

You can go backwards too, so injective.

Why is it surjective? Given \(\left[\begin{array}{c} q \\ p \end{array} \right] \) for some \(q, p \in K \).

WLOG \(\tau := \frac{p}{q} \) is in \(\mathcal{H} \).

Then \(\left[\begin{array}{c} q \\ p \end{array} \right] \sim \left[\begin{array}{c} 1 \\ \tau \end{array} \right] \) in \(\text{Cl}(K) \).

Let \(ax^2 + bxy + cy^2 \) be any polynomial of \(\tau \).

Check: This maps to it.
E1.4. **Corollary.** \(\text{Cl}(D) \) is a group.

As Dirichlet discovered, if

\[
\begin{align*}
 f(x, y) &= ax^2 + bxy + cy^2 \\
 g(x, y) &= a'x^2 + b'xy + c'y^2
\end{align*}
\]

with \(\gcd(a, a', b + b') = 1 \)

both of disc \(D \), then their composition is

\[
 aa'x^2 + Bxy + \frac{B^2 - D}{4aa'} y^2
\]

where \(B \) is the unique integer \(\pmod{2aa'} \) with

\[
\begin{align*}
 B &= b \pmod{2a} \\
 B &= b' \pmod{2a'} \\
 B^2 &\equiv D \pmod{4aa'}
\end{align*}
\]

Proof. Multiply ideals!

Claim. If \(f \) is a form of disc \(D \), then

\[
 \mathfrak{A} \mathfrak{A}^t(f) \mathfrak{A} \cong \mathcal{O}^x.
\]

Proof. Let \(\frac{u + \sqrt{d}}{2} \) be a unit, with \(\left(\frac{u + \sqrt{d}}{2} \right) \left(\frac{u - \sqrt{d}}{2} \right) = 1 \).

\[
\begin{align*}
 ax^2 + bxy + cy^2 &\cong (x + \Theta y) (x + \Theta' y) \\
 &\cong \left(\frac{u + \sqrt{d}}{2} \right) (x + \Theta y) \left(\frac{u - \sqrt{d}}{2} \right) (x + \Theta' y) \\
 &\text{Foil.}
\end{align*}
\]

Get a change of variables.
1.5. The zeta function.

Def. If a is an (integral) ideal then $N(a) = [\theta : a]$. If $a = (a)$ then $N(a) = N(a)$.

Def. If \mathcal{O} is the ring of integers of (any) number field K then its Dedekind zeta function is

$$\zeta_K(s) = \sum_{a \subseteq \mathcal{O}} (Na)^{-s} = \prod_{P} \left(1 + (NP)^{-s} + (NP)^{-2s} + \ldots \right)^{-1}$$

Ex. If $K = \mathbb{Q}$ then $\zeta_K(s) = \zeta(s)$.

Ex. $\mathbb{Z}[i]$ is a PID, with unit group \mathbb{Z} so

$$\zeta_{\mathbb{Z}[i]}(s) = \frac{1}{4} \sum_{(a,b) \neq (0,0)} (a^2 + b^2)^{-s}.$$

Prop. For any number field K we have

$$\zeta_K(s) = \zeta(s) \cdot L(s, \chi_D).$$

Proof. For each prime p, RHS is:

- $(1 - p^{-s})^{-2}$ if p splits
- $(\frac{D}{p}) = 1$.
- $(1 - p^{-s})^{-1}$ if p ramified
- $(1 - p^{-s})^{-1}$ if inert.

Implies: # of ideals of norm n is

$$\sum_{d | n} 1 \cdot (\frac{D}{e}) = \sum_{e | n} (\frac{D}{e}),$$

i.e. # of inequivalent representations.

We recognize this now!