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ON A PRINCIPLE OF LIPSCHITZ

H. DAVENPORT*.

1. It is often desirable to be able to approximate to the number of
points with integral coordinates in a closed bounded region R in n dimen-
sional space by means of the volume V(K) of ft. The position is very simple
if R depends on one parameter X, and is obtained from- a fixed region r\x

by uniform dilatation about the origin with linear ratio of dilatation X.
Then it is immediate that the number of points with integral coordinates
in ft is

as X -*oo, where Vx is the volume of flv This, however, is a very special
situation. A .simple estimate for N(ft)— V(K), where N(1R.) is the number
of points with integral coordinates in )v, is easily given in the two dimen-
sional case. We have I

where L is the length of the boundary of 'R , assumed to be a rectifiable curve.
In more than two dimensions, I know only of a discussion in Bachmann's
Analytische Zahlentheorie (436-444), though there may well be other work
bearing on the question. Bachmann enunciates a principle which he
attributes to Lipschitz j , though in fact Bachmann's formulation is more
explicit than that of Lipschitz. The principle is that, in n dimensional
space,

where Q is the greatest n— 1 dimensional volume of any of the regions into
whioh ft projects on the n coordinate spaces zf = 0, and © is bounded,
presumably depending only on n if ft satisfies suitable conditions. The
principle is expressed slightly differently, in the form that the number of
points of a cubical lattice of side 8 in ft is

If R is fixed, and 8-+0, this is asymptotically the same as the result first
mentioned. But the most interesting application§ is precisely to a case
in whioh R is not fixed, but itself varies with «.

* Received and read 15 June, 1950.
f See, for example, Landau, Vorlesungen iiber Zahlentheorie, 2, 166. Steinhaus, in

Colloq. Math., 1 (1947), 1-5, has proved that the result holds with L on the right, provided
L> 1.

X Monatsber. der Berliner Academic, 1865, 174 et aeq.
§ To the average olaas-number of quadratic forms (Bachmann, loc. cit., 450-459).
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The " principle of Lipschitz ", as formulated above, is plainly not valid,
even for the simplest kind of region. The example of a small sphere round
the origin shows that the right-hand side must not be allowed to be less
than 1. Even if we amend the statement by reading Q-f-1 in place of Q,
it is still false; for in the case of a long thin cylinder round one of the
coordinate axes, JV(R) may be arbitrarily large, and V(K) and Q both
arbitrarily small. It seems necessary to introduce into the estimate not
only the n— 1 dimensional projections of R but also all the m dimensional
projections of R on the spaces obtained by equating any n—moi the
coordinates to zero.

2. Ln order to obtain a simple result, we impose the following somewhat
restrictive conditions on R, which is supposed throughout to be a closed and
bounded set of points.

I. Any line parallel to one of the n coordinate axes intersects R in a set of
points which, if not empty, consists of at most h intervals.

II. The same is true (with m in place of n) for any of the m dimensional
regions obtained by projecting ft on one. of the coordinate spaces defined by
equating a selection of n—nt of the coordinates to zero; and this condition is
satisfied for aU mfrom 1 to n— 1.

THEOREM. / / R satisfies the conditions 1 and 11, then

n-l .

m —0

where Vm is the sum of the m dimensional volumes of the- projections of R on
the various coordinate spaces obtained by equating any n—m coordinates to zero,
and VQ=lby convention.

The various volumes mentioned can be understood as Lebesgue
measures, which exist because all the sets are closed and bounded.

ln applications to number-theory*, we are concerned with a region
consisting of all points (xlt ..., xn) which satisfy various algebraic
inequalities

Fi(x1,...,xn)^Q (»=1, 2, ...,&),

where Ff is a polynomial with real coefficients, whose degree is bounded,
say by I. I t is assumed that the inequalities are such as to imply that R is
bounded. Under these circumstances, every m dimensional projection of
R on a coordinate space is also denned by a finite number of algebraic

* See the two following papers in this Journal, with the title " On the clam-number of
binary oubic forms ".
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inequalities. Both the number of these inequalities and their degrees are
bounded in terms of n, k, I. The region R therefore satisfies the oon-
ditions I and II, for a value of h depending only on n, k, I. It followB
from the theorem that

\N(R)-V(R)\<CmAx(V, 1),

where C depends only on n, k, I, and V is the greatest m dimensional volume
of any projection of R on a coordinate space, m taking all values from 1 to
n—1. The essential point is that C is independent of the coefficients of
the polynomials F{.

3. Proof of the Theorem*. Let f(xv ..., xn) be the characteristic
function of the closed and bounded set R; this is a measurable funotion,
since R is olosed. All summations and integrations are extended over some
large cube containing R, and variables of summation are integers. If
I 1 < t a < . . . < t f f l i s any selection of numbers from 1 2 ..., n, we denote by
f(xfi, ..., xim) the funotion which is 1 or 0 according as there do or do not
exist values of the remaining variables which make (xv ..., xn) a point of R.
Thus f(x{, ..., xim) is the characteristic function of the m dimensional set
obtained by projecting R on the coordinate space in which the remaining
n—m coordinates are zero. Such a funotion is also a measurable function
of the variables ocourring in it.

By a special case of Fubini's theorem, the measure of R is given by a
repeated integral:

V(R)=\dx1\dx2...\f(xl, ...,xn)dxni

and similarly for the measures of the various projections of R.
With the notation just introduced, the explicit formulation of the

theorem becomes:

(1)
\J J

2 \dxti... \f(x{i, ..., x{n)dxim;

where, in the case m = 0, the value 1 is to be ascribed to the meaningless
inner sum on the right.

When n = 1, the one dimensional set R consists, by the hypothesis I,
of at most h intervals, and the result is then obvious, since it reduces to

IIf(x)dx-i:f(x)

* I am greatly indebted to Mr. H. Kestelman for helpful suggestion* and advice in
connection with this proof,
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The general result is now proved by induction on n, assuming the truth for
n— 1. The intersection of the set f? with any space xx = £ satisfies the
conditions of the n— 1 dimensional theorem, and so for any particular value
of xx the induotive hypothesis gives

*, *„

;
r-0

2 I dx{ ... \f{xv x{y ..., x(r)dx(r.
t1<...«rJ J

t,>2

Integrating the expression inside the modulus sign with respect to xlt

we obtain

I(&&i... \f(xv ..., xn)dxn—S...S I/(a?i, ...', xn)dxi
i J J Zf Xn J

f -0 »!<...<»,. J J J

Replacing r-f 1 by m and making a slight change of notation, this is

(2) Z h™ S f dx, ... f / (*, , ..., «,„)&»,..
m - l i1<...<j»i J J

Also by the one dimensional case we have, for any particular values of

I [/(*!, .... S j ^ - l / f o , ..., Xn)

on recalling the meaning assigned to f(x2, ..., x,,). Summing over x2,..., xn,
and applying the n—\ dimensional result, we obtain

S . . . S \f(xv ...,xn)dx1-It...Ilf(xlt ...,xn)

*. •-

».o
A«-i-~ S \dxit... f

(3) ^
*i< ...«*
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The sum of the expressions (2) and (3) is an upper estimate for the left-
hand side of (1). Adding these two expressions together, we obtain from
(3) the term hn when m = 0, and for 1 ̂ m < n — 1 we obtain

J«K-J/K. •"xddxw
This gives the right-hand side of (1), and so proves the result.

University College,
London.

ON THE CLASS-NUMBER OF BINARY CUBIC FORMS (I)

H. DAVENPOBT*.

1. The arithmetical theory of binary cubio forms with integral coeffi-
cients was founded by Eisenstein, and further contributions were made
by Arndt, Hermite and others f. Two suoh forms are said to be equivalent
if one can be transformed into the other by a linear substitution with
integral coefficients and determinant ± 1 , and properly equivalent if this
can be aohieved with determinant 1. The discriminant of the form

(1)

is the invariant

(2) D=18abcd+b*c*-4ac*—468d-

and this has the same value for equivalent forms. The forms of given
discriminant, if there are any, fall into a finite number of classes of equiva-
lent forms, or alternatively, of properly equivalent forms. We shall
restrict ourselves to those classes which consist of irreducible forms, that is,
forms which cannot be expressed as the product of a linear form and a
quadratic form with rational coefficients. The object of this paper is to
prove the following result.

THEOREM. / / h(D) denotes the number of classes of properly equivalent
irreducible forms of discriminant D, then

(3) I h(D)= *Lx+O(X*)
D.I Ivo

as J->oo.

* Received and read 15 June, 1900.
f For referonoee, see Diokson's History of the theory of numbers, vol. 3, chapter 12.


