9.1. The group of points on an elliptic curve.

Theorem. Let E be an elliptic curve. Then,

$$E(\mathbb{Q}) \cong \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$$

as an abelian group.

Indeed, $E(\mathbb{Q}) \cong \mathbb{C}/\Lambda$ for a lattice Λ, simultaneously as an abelian group and as a complex manifold.

Theorem. (Mordell–Weil) The group $E(\mathbb{Q})$ is finitely generated. So,

$$E(\mathbb{Q}) \cong \hat{T} \times \mathbb{Z}^{r}$$

where \hat{T} is the torsion, r is the rank.

(The same is true over any number field.)

Mazur’s Theorem. T is one of the following groups:

* \mathbb{Z}/n for $1 \leq n \leq 10$ and 12

* $\mathbb{Z}/2 \times \mathbb{Z}/2n$ for $1 \leq n \leq 4$.

Moreover, all of the above occur for inf. many E’s over \mathbb{Q}.

Conjectures.

(Goldfeld) On average, the rank is $\frac{1}{2}$.

(Poonen et al.) The rank is bounded.

(Garton, Park, Voight, Wood)

Theorem. (Bhargava–Shankar) The average rank is bounded.

(Best now: $\leq 0.85\ldots$)
9.2. \textit{2-torsion.} Given $y^2 = x^3 + Ax + B$.

Proposition. $P \in E(C)[2]$ iff $y = 0$ or $P = \infty$.

Proof. Tautologically $\infty \in E(C)[2]$ since $E(C)[1] \subseteq E(C)[2]$.

Picture:

\[
\begin{array}{c}
\text{Picture:} \\
\begin{array}{c}
\text{Picture:} \\
\end{array}
\end{array}
\]

Projectivize: If $P \in E(C)[2] \setminus \infty$, the tangent line to E at P needs to intersect E at P, P, and ∞.

\[y^2z = x^3 + Ax^2 + Bz^3.\]

The tangent line is $rX + sY + z = 0$ for some $r, s, t = 0$.

Want $[0 : 1 : 0]$ on it? $s = 0$.

The affine patch is $x = -t^2$. (or just $t = 0$ → i.e. a vertical tangent line intersects E in x at ∞.)

Let's do this formally.

\[E = V(y^2z - x^3 - Ax^2 - Bz^3) = V(f).\]

\[
\frac{\partial f}{\partial x} = -3x^2 - Az^2,
\]

\[
\frac{\partial f}{\partial y} = 2yz,
\]

\[
\frac{\partial f}{\partial z} = y^2 - 2AZz - 3Bz^2.
\]

The tangent line is $X \cdot \frac{\partial f}{\partial x}(P) + Y \cdot \frac{\partial f}{\partial y}(P) + Z \cdot \frac{\partial f}{\partial z}(P) = 0$.

So demand $\frac{\partial f}{\partial y}(P) = 2yz = 0$.

Since $\not{y} \neq 0$ for $P \neq \infty$,

\[y = 0.\]
Prop. \(E(a)[2] = \begin{cases}
1 \text{ if } f \text{ has no real roots} \\
\pi/2 \text{ if } f \text{ has one} \\
\pi/2 \times \pi/2 \text{ if } f \text{ has three.}
\end{cases} \)

Why not \(\pi/4 \)? Never mind, this is completely obvious.

We have \(P + Q + R = 0 \) (collinear).

So \(P + Q = -R = R \)

and the same for the other points.

3-torsion points. \(P \in E(C)[3] \) when?

Whenever \(P + P + P = 0 \), which means the tangent line intersects \(E \) with multiplicity 3.

Such a point is called a flex point (pt of inflection).

Two ways to find them.

(1) Division polynomials.

Find a formula for \(2P \). To make life easier, work affinely.

\[\frac{dy}{dx} = 2y \frac{dy}{dx} = 3x^2 + A \]

So \[\frac{dy}{dx} = \frac{3x^2 + A}{2y} \]

So line is

\[y - y_0 = \left(\frac{3y_0^2 + A}{2y_0} \right) (x - x_0). \]
Plug in \(y = y_0 + \left(\frac{3x_0^2 + A}{2y_0} \right)(x - x_0) \) into

\[y^2 = x^3 + Ax + B \]

\[
\left(y_0 + \left(\frac{3y_0^2 + A}{2y_0} \right)(x - x_0) \right)^2 = x^3 + Ax + B
\]

Or \(x^3 - \left(\frac{3y_0^2 + A}{2y_0} \right)^2 x^2 + \left(\ldots \right) x + \left(\ldots \right) = 0 \).

This is \((x - x_0)^2(x - x_1) \) where \(x_1 \) is the coordinat of the third intersection point. Here we want to demand \(x_1 = x_0 \), or

\[
\left(\frac{3x_0^2 + A}{2y_0} \right)^2 = 3x_0.
\]

We already know \(y_0 \neq 0 \). Squaring, using \(y_0^2 = x_0^3 + Ax_0 + B \),

\[
9y_0^4 + 6x_0^2 A + A^2 = 3x_0 = \frac{12(x_0^3 + Ax_0 + B)x_0}{4(x_0^3 + Ax_0 + B)}
\]

Put on one side and set numerator

Also note, if the third point has \(x \)-coord \(x_0 \), it has \(y \)-coord \(y_0 \), because the tangent line is not vertical.

Proposition. \((x_0, y_0) \in E(\mathbb{C})[3] \) iff \((x_0, y_0) = \infty \) or

\[
3x_0^4 + 6x_0^2 A + 12Bx_0 - A^2 = 0.
\]
Proposition. \(E(3) [3] \cong (\mathbb{Z}/3)^2 \).

Proof. There are nine points.

Why distinct? \(\frac{f'(x_0)^2}{4f(x_0)} \)

We had \(\frac{(f'(x_0))^2}{2f(x_0)} = 3x_0 = f''(x_0)/2 \)

and so \(f'(x_0)^2 - 2f(x_0)f''(x_0) = 0 =: \psi_3(x) \) \[\text{or } -\psi_3 \]

(another expression for our poly)

Why does this have four distinct roots?

Check that \(\psi_3(x) \) and \(\psi_3'(x) \) have no roots in common

\[
\psi_3'(x) = 2f'(x)f''(x) - 2f'(x)f''(x) - 2f(x)f'''(x) = -12f(x)
\]

Any common root of \(\psi_3 \) and \(\psi_3' \) would be a root of \(f \) and \(f' \), contradicting non-singularity!

So get four distinct \(x_0 \)

two \(y_0 \) for each (since \(y_0 \neq 0 \))

And the group \((\mathbb{Z}/3)^2 \) is the only group with nine elements, all of order 1 or 3.
10.1. Addition formulas and such.

Given an EC \(y^2 = x^3 + Bx + C \),

Here I use \(B \) and \(C \) for consistency with Silverman–Tate, who allow an \(Ax^2 \) term.

We have explicit formulas for the group law.

Given \(P_1 = (x_1, y_1) \) and \(P_2 = (x_2, y_2) \),

Assume \(P_1 \neq P_2 \) or \(x_1 \neq x_2 \) (otherwise \(P_1 + P_2 = O \)).

If \(P_1 \neq P_2 \), the secant line is

\[
y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)
\]

\[
y = \frac{y_2 - y_1}{x_2 - x_1} x + \left(y_1 - \frac{y_2 - y_1}{x_2 - x_1} x_1 \right)
\]

Solve \(y^2 = (\text{that})^2 = x^3 + Bx + C \)

Get a (new) cubic equation, \(-x^2\) coeff is \(x_1 + x_2 + x_3 \).

Claim. \(x(P_1 + P_2) = \left(\frac{y_2 - y_1}{x_2 - x_1} \right)^2 - x_1 - x_2 \).

Proof. Exercise!

Also, \(y(P_1 + P_2) = \) (well, plug into \((*)\).)

So addition of points is completely algorithmic.

Similarly, if \(P_1 = P_2 \), the tangent line is

\[
y - y_1 = \frac{f'(x_1)}{2y_1} (x - x_1), \quad \text{and} \quad f = x^2 + Bx + C
\]
We obtain a duplication formula

\[x(2P) = \frac{x_1^4 - 2Bx_1^2 - 8Cx_1 + 8}{4x_1^3 + 4Ax_1^2 + 4Bx_1 + 4C}. \]

Now, inductively we obtain formulas for \(x(3P), x(4P), \) etc.

Suppose, for some \(n, \ x(nP) = x(P) \).

Then either \(nP = P, \) so \((n-1)P = 0 \) (should have discovered earlier)

or \(nP = -P, \) so \((n+1)P = 0 \).

This means any torsion point has to satisfy a certain polynomial.

(Flash slide: Sil Ex III 3.7.)

Nagell-Lutz Theorem. Given \(y^2 = x^3 + ax^2 + bx + c \).

Any point \(P = (x_0, y_0) \) of finite order has \(y = 0 \), or rational \(y \in \mathbb{Q} \) and

\[y | D = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2. \]

Note. This means you can find all of them.

Skip for now.

Work locally. Follow ST (but with \(v_p(-) \) for \(v_2 \) their ord)

Given \((x, y) = (\frac{m}{n} P^{-\mu}, \frac{u}{w} P^{-v}) \), assume \(\mu > 0 \).

Since \((x, y) \in E \),

\[\frac{u^2}{w^2 P^{2\mu}} = \frac{w^3 + aw^2 u^2 P^{-\mu} + bwn P^{2\mu} + cn^3 P^{3\mu}}{n^3 P^{3\mu}}. \]

\(-2\mu \) and \(-3\mu, \) so \(\frac{2\mu}{3\mu} \)
10.3. Elliptic curves over \mathbb{C}.

Theorem. An elliptic curve "is" \mathbb{C}/Λ for a lattice Λ.

More specifically: Let E/\mathbb{C} be an EC. Then there exists a lattice $\Lambda \leq \mathbb{C}$, unique up to homothety, and a complex analytic isomorphism

$$\phi : \mathbb{C}/\Lambda \rightarrow E(\mathbb{C})$$

of complex Lie groups.

(And we will say what the isomorphism is.)

Def. A lattice $\Lambda \leq \mathbb{C}$ is a discrete subgroup of \mathbb{C} which contains an \mathbb{R}-basis for \mathbb{C}.

Equivalently: $\Lambda \otimes \mathbb{R} = \mathbb{C}$.

$$\Lambda = \mathbb{Z} \alpha + \mathbb{Z} \beta$$

where α, β are not \mathbb{R}-scalar multiples of each other.

Λ is homothetic to Λ' if $\Lambda' = \gamma \Lambda$ for some $\gamma \in \mathbb{C}$.

Clearly \mathbb{C}/Λ is an abelian group.

It is a 1-dimensional complex manifold; it is covered by neighborhoods homeomorphic to \mathbb{C}.

Here a complex Lie group is a differentiable manifold such that the group operations are "compatible with the smooth structure".
10.4. How will we do this?

Define an embedding $\mathbb{C}/\Lambda \to \mathbb{P}^2(\mathbb{C})$ with image an elliptic curve. We will have

$$z \mapsto [f(z) : f'(z) : 1]$$

for a certain function f.

In particular f will have to be doubly periodic on \mathbb{C}

$$f(z) = f(z + \lambda) \text{ for all } \lambda \in \Lambda$$

such a function is called elliptic w.r.t. Λ.

Moreover, the field of all such functions will be generated by f and f'.

Example. Let $S' = \mathbb{R}/2\pi \mathbb{Z}$.

Define an embedding $\mathbb{R}/2\pi \mathbb{Z} \to \mathbb{P}^2$

$$x \mapsto [f(x) : f'(x) : 1]$$

where $f(x) := \sum_{n=0}^{\infty} (-1)^n x^{2n} (2n)!$ also known as "cos x".

The image is, of course, the circle $x^2 + y^2 = 1$.

The field of functions periodic mod 2π is generated by $f(x)$ and $f'(x)$.

E.g., $\cos(3\theta) = 4\cos^3(\theta) - 3\cos(\theta)$

Studying this field leads to Fourier analysis. Higher dimensions: modular and automorphic forms.
Given a lattice $\Lambda \subseteq \mathbb{C}$.

A fundamental parallelogram is a set of the form

$$D = \{ a + t_1 \omega_1 + t_2 \omega_2 : 0 \leq t_1, t_2 < 1 \}$$

where $a \in \mathbb{C}$ and ω_1 and ω_2 are a basis for Λ.

Even if you take $a = 0$, there's no obvious canonical choice.

By construction, the map

$$D \rightarrow \mathbb{C}/\Lambda$$

is bijective; equivalently, for every $z \in \mathbb{C}$, the set

$$(z + \Lambda) \cap D$$

consists of exactly one point.

(Indeed: D is a fundamental domain for the action of Λ on \mathbb{C} by addition.)

An elliptic function is a meromorphic function $f(z)$ on \mathbb{C} which satisfies

$$f(z + \omega) = f(z)$$

for all $\omega \in \Lambda$.

The set of all such is denoted by $\mathbb{C}(\Lambda)$.

Proposition. An elliptic function f with no zeroes (or poles) is constant.

Proof. First suppose f is holomorphic (i.e. no poles).

Since D is compact and f is continuous, f is bounded on D. Since f is periodic, f is bounded on \mathbb{C}.

By [Liouville's Theorem](https://en.wikipedia.org/wiki/Liouville%27s_theorem), f is constant.

Now, if f has no zeroes, look at $\frac{1}{f}$.
Our goal, given a lattice \(\Lambda \in \mathbb{C} \), to construct a function \(\mathbb{C}/\Lambda \rightarrow \mathbb{P}^2(\mathbb{C}) \)

i.e. a doubly periodic function

\[
\begin{align*}
\mathbb{C} & \rightarrow \mathbb{P}^2(\mathbb{C}) \text{ with } f(\tau) = f(\tau + \omega) \\
& \text{for all } \tau \in \mathbb{C}, \omega \in \Lambda
\end{align*}
\]

and a map \(\mathbb{C}/\Lambda \rightarrow \mathbb{P}^2(\mathbb{C}) \)

\[
\tau \rightarrow [f(\tau) : f'(\tau) : 1]
\]

which is a complex analytic diffeomorphism and a group homomorphism.

[Cover 10.5 now.]

Here is our function. Given a lattice \(\Lambda \), the \underline{Weierstrass p-function} is

\[
p_\Lambda(\tau) = \frac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{(\tau - \omega)^2} - \frac{1}{\omega^2} \right).
\]

Also define the \underline{Eisenstein series} of weight \(2k \) \((k \geq 1 \text{ integer})\) for \(\Lambda \) by

\[
G_{2k}(\Lambda) = \sum_{w \in \Lambda \setminus \{0\}} w^{-2k}.
\]

Properties.

(a) \(G_{2k}(\Lambda) \) is absolutely convergent for \(k > 1 \).

(Also, for \(\Lambda = \langle 1, i \rangle \) it is holomorphic as a function of \(\tau \).)
11.2.

(b) The series defining \(p_\Lambda(z) \) converges absolutely and uniformly on every compact subset of \(\mathbb{C} \setminus \Lambda \).

It is meromorphic with a single pole at every lattice point, and no other poles.

(c) The Weierstrass \(g \) - function is even and elliptic.

(Note: Following Silverman, also Nigel Roston's notes)

Proof.

(a)

We want to count, for each integer \(N \geq 1 \),

\[\# \{ \mathbf{w} \in \Lambda : N \leq |\mathbf{w}| \leq N + 1 \} \]

Let \(A \) be the area of a fundamental parallelogram \(D \).

We expect \(\frac{\pi N^2}{A} \) parallelograms in this circle.

Indeed, \# lattice points in circle

\[= \frac{\pi N^2}{A} + O(N) \]

This depends on \(\Lambda \).

This takes a little bit of doing to prove.

(Exercise.)

So \(\# \{ \mathbf{w} \in \Lambda : N \leq |\mathbf{w}| \leq N + 1 \} \leq c N \) (for \(N > 1 \))

for a constant \(c = c(\Lambda) \).

Thus,

\[\sum_{\mathbf{w} \in \Lambda} \frac{1}{|\mathbf{w}|^{2k}} \leq \sum_{|\mathbf{w}| \leq 1} \frac{1}{|\mathbf{w}|^{2k}} + \sum_{n=1}^{B} \frac{c N}{N^{2k}} \]

finite sum which converges for \(k > 1 \).
11.3.

(b) We begin with an upper bound for \(\left| \frac{1}{(z-w)^2} - \frac{1}{w^2} \right| \).

Assume that \(|w| > 2|z|\), which will be true for all but finitely many \(w \in \Lambda\).

Then above
\[
\left| \frac{w^2 - (z-w)^2}{w^2(z-w)^2} \right| = \left| \frac{2w - z}{w^2(z-w)^2} \right| = \left| \frac{12w - z}{w^2(z-w)^2} \right| < \frac{5}{2} |w|
\]
\[
= \frac{|z|}{|w|^3} \cdot \frac{5}{2} |w| = 10 \frac{|z|}{|w|^3}
\]

So, for fixed \(z\),

\[
P^\Lambda(z) = \frac{1}{z^2} + \frac{1}{z^2} \sum_{w \in \Lambda, w \neq 0} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2} \right) + \sum_{w \in \Lambda, |w| > 2z} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2} \right)
\]

finite sum

Bounded above by

\[
\sum_{w \in \Lambda, |w| > 2z} 10 \frac{|z|}{|w|^3}
\]

which is absolutely convergent for any \(z \in \mathbb{C} \setminus \Lambda\).

"Obviously" it is uniformly convergent on compact subsets.

(The purpose of working your ass off in 701/702 is to make this "obvious". It is a great, and not necessarily easy, exercise for a beginner).
(c) $p^\wedge(z)$ is even by construction.

$$p^\wedge(z) = \frac{1}{(-z)^2} + \sum_{w \in \Lambda \atop w \neq 0} \left(\frac{1}{(-z-w)^2} - \frac{1}{w^2} \right)$$

$$= \frac{1}{z^2} + \sum_{w \in \Lambda \atop w \neq 0} \left(\frac{1}{(-z+w)^2} - \frac{1}{(w)^2} \right) \quad (\text{since } w \in \Lambda \Rightarrow -w \in \Lambda)$$

$$= p^\wedge(z).$$

You can show p is periodic by construction (but it is slightly messy).

Alternatively, since p is defined by a uniformly convergent series, we can differentiate it term by term.

$$p^\wedge'(z) = -2 \sum_{w \in \Lambda} \frac{1}{(z-w)^3} \quad \text{obviously periodic}$$

$$p^\wedge'(z + \lambda) = \sum_{w \in \Lambda} \frac{-2}{(z + \lambda - w)^3}$$

and $\Lambda = \Lambda \oplus \lambda$.

For fixed $w \in \Lambda$, \(\frac{d}{dz} (p(z+w) - p(z)) \)

$$= p'(z+w) - p'(z) = 0$$

So $p(z+w) - p(z) = c(w)$, a constant depending only on w.

What could it be? Let w be w_1 or w_2 (2-spanning vectors for Λ)

Then p is holomorphic at $\frac{w}{2}$.

Choose $z = -w/2$,

$$p\left(-\frac{w}{2}\right) - p\left(-\frac{w}{2}\right) = c(w).$$

But p is even so $c(w) = 0$!
This proves $p(t + w) = p(t)$ for $w = w_1, w_2$
where $\Lambda = Z w_1 \oplus Z w_2$
so $p(t + w) = p(t)$ for all $w \in \Lambda$.

Next time. Prove that

$$(p^\Lambda(t))^2 = 4 p^\Lambda(t)^3 - g_2 p^\Lambda(t) - g_3$$

where $g_2(\Lambda) = 60 G_4(\Lambda)$
$g_3(\Lambda) = 140 G_6(\Lambda)$.