Homework 11, Math 702 – Frank Thorne (thorne@math.sc.edu)

You are welcome and encouraged to collaborate, but please write up your own solutions. Due Friday, April 20, 2018.

- 1. Determine the Galois closure of the field $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ over \mathbb{Q} .
- 2. Let p be prime. The field extension $\mathbb{F}_p(x, y)/\mathbb{F}_p(x^p, y^p)$ doesn't satisfy the hypotheses of the primitive element theorem. Compute its degree (and in particular prove that it is finite) and exhibit an infinite number of intermediate subfields.
- 3. Determine a rational polynomial which has $\cos(40^\circ)$ as a root.
- 4. Determine the Galois group of $x^4 + 8x + 12$.
- 5. Let θ be a root of $x^3 3x + 1$. Prove that $\mathbb{Q}(\theta)$ is Galois and cyclic over \mathbb{Q} , so that $x^3 3x + 1$ splits over $\mathbb{Q}(\theta)$. Compute the other two roots of this polynomial, as polynomials in θ .