Homework 7, Math 701 – Frank Thorne (thorne@math.sc.edu)

Instructions: You are welcome and encouraged to collaborate, but please write up your own solutions. Due Friday, December 8, 2017.

- 1. Let $R = \mathbb{Z}[\sqrt{-n}]$, where n is a squarefree integer ≥ 3 .
 - (a) Prove that 2, $\sqrt{-n}$, and $1 + \sqrt{-n}$ are irreducible in R.
 - (b) Prove that R is not a UFD. (For example, one may prove that any one of the above irreducible elements is not prime.)
 - (c) Give an explicit ideal in R that is not principal.
- 2. Let $0 \neq \alpha = a + bi \in \mathbb{Z}[i]$. Prove that the quotient ring $\mathbb{Z}[i]/(\alpha)$ has exactly $a^2 + b^2$ distinct elements.

Here is one way in which this may be proved. (Feel free to vary as you see fit.)

- (a) Use the Chinese remainder theorem to reduce to the case where $\alpha = \pi^n$ is a power of a prime element π of $\mathbb{Z}[i]$.
- (b) Explain why multiplication by π^n induces a $\mathbb{Z}[i]$ -module homomorphism $\mathbb{Z}[i]/\pi^{n+1}\mathbb{Z}[i] \to \mathbb{Z}[i]/\pi^{n+1}\mathbb{Z}[i]$. Compute its image and kernel. Writing |M| for the number of elements in a module M, prove (by induction) that $|\mathbb{Z}[i]/\pi^n\mathbb{Z}[i]| = |\mathbb{Z}[i]/\pi\mathbb{Z}[i]|^n$.
- (c) Prove the result in the case where π is prime, and conclude.
- 3. Let $R = \mathbb{Z} + x\mathbb{Q}[x] \subset \mathbb{Q}[x]$ be the set of polynomials in x with rational coefficients whose constant term is an integer.
 - (a) Prove that R is an integral domain and that its units are ± 1 .
 - (b) Show that the irreducibles in R are $\pm p$ for primes $p \in \mathbb{Z}$, and polynomials f which are irreducible in $\mathbb{Q}[x]$ and have constant term ± 1 . Prove that these irreducibles are prime in R.
 - (c) Show that x cannot be written as the product of irreducibles in R (and, in particular, that x is not irreducible), and hence that R is not a UFD.
 - (d) Show that x is not prime in R and describe the quotient ring R/(x).
- 4. Prove that $x^2 + y^2 1$ is irreducible in $\mathbb{Q}[x, y]$.
- 5. Let R be a commutative ring. Prove that $\operatorname{Hom}_R(R, M)$ and M are isomorphic as left R-modules.
- 6. Let N be a submodule of a module M. Prove that if M/N and N are both finitely generated, then so is M.