Homework 4, Math 701 – Frank Thorne (thorne@math.sc.edu)

Instructions: You are welcome and encouraged to collaborate, but please write up your own solutions. Due Monday, October 30, 2017.

- 1. Exhibit two distinct 2-Sylow subgroups of S_5 and an element of S_5 that conjugates one to the other.
- 2. Consider the group $SL_2(\mathbb{Z}/3) = SL_2(\mathbb{F}_3)$ of 2×2 matrices with entries in $\mathbb{Z}/3$ (i.e., in the finite field \mathbb{F}_3) whose determinant is 1.

(Note that the determinant involves multiplying as well as subtracting elements of $\mathbb{Z}/3$. If you are not familiar with finite fields, just note that both multiplication and addition are carried out modulo 3.)

- (a) Prove that this group has 24 elements in it.
- (b) Describe all of its 2-Sylow and 3-Sylow subgroups.
- (c) Prove that the center Z of $SL_2(\mathbb{Z}/3)$ consists of $\pm I$, and that $SL_2(\mathbb{Z}/3)/Z \simeq A_4$.
- 3. Construct a non-abelian group of order 75.
- 4. Classify all groups of order 28 (there are four isomorphism types).