Homework 1, Math 701 – Frank Thorne (thorne@math.sc.edu)

Instructions: You are welcome and encouraged to collaborate, but please write up your own

solutions.

Due Friday, September 15, 2017.

- 1. Describe a couple of 'interesting' examples of vector spaces, and homomorphisms to or from your vector spaces.
- 2. Give a proof that every basis of \mathbb{R}^2 has exactly two vectors. Your proof should be as minimal as possible; in particular, don't refer to any propositions that say anything about 'dimension'.
- 3. (Row Rank Equals Column Rank) The row rank and column rank of an $n \times m$ matrix A are the dimensions of the subspaces of F^n and F^m , respectively, spanned by its rows and columns respectively.

Prove¹ that the row rank and column rank are equal as follows:

- Show that the column rank is the smallest number r for which the homomorphism ϕ corresponding to A can be written as a composition of two linear maps $F^m \to F^r \to F^n$.
- Conclude that r is the smallest number for which one can write A = BC, with B an $n \times r$ and C an $r \times m$ matrix respectively.
- Taking transposes, conclude the result.
- 4. Let V be a vector space, possibly infinite dimensional.
 - (a) Prove that the map

$$v \to \{f \to f(v)\}$$

defines an injective map from V to the double dual $V^{**} = (V^*)^*$.

- (b) Prove that this map is not surjective if V is infinite dimensional.
- 5. Let V be a finite dimensional vector space, and let A and B be the matrices of a linear transformation ϕ with respect to two different bases.

Prove that $B = MAM^{-1}$ for some matrix M, and describe M explicitly.

6. Exhibit a 2×2 matrix with real entries which does not have any eigenvalues over \mathbb{R} . (Better still: can you characterize all such matrices?)

¹Credit: I learned of this proof from Marc van Leeuwen