Problems 1-5 in Section 5.2 are good warmup induction problems. They are part of the “additional” problems in this set. Consider doing these first if you find these exercises difficult.

Core:

5.2: 6, 11, 12, 13, 14, 19.

5.3: 2, 5, 10, 18, 21, 34, 35.

5.4: 1, 5.

Additional:

5.2: 1-5, 7, 9.

5.3: 11, 19.

5.4: 4, 6.

Bonus:

1. (2 points) 5.3, 37.

2. (2 points) Find an integer N for which the following statement is true, and prove it. (You are not required to find the smallest possible N.)

 If you only have coins worth 10 cents and 13 cents, then for any integer $n \geq N$, some combination of coins is worth exactly n cents.

3. (5 points - secret challenge!) For all m and $n \geq 0$, define a function $F(m, n)$ recursively as follows: If $m = 0$ then $F(m, n) = n + 1$. If $m > 0$ and $n = 0$ then $F(m, n) = F(m - 1, 1)$. If $m > 0$ and $n > 0$, then $F(m, n) = F(m - 1, F(m, n - 1))$.

 As a warmup, show that $F(2, 3) = 9$ and $F(3, 2) = 29$.

The secret challenge: Can you write down $F(5, 5)$? If so, write it down as an ordinary number (in base 10). Prove all your claims.