Please work without books, notes, calculators, or any assistance from others.

1. (13 points) If \(a \) is any odd integer and \(b \) is any even integer, prove that \(2a + 3b \) is even. (For this problem, use only the definitions of even and odd, and do not appeal to any previously established properties of even and odd integers.)

Answer 1: You know that \(a \) is odd, and therefore \(a = 2r + 1 \) for some integer \(r \). You know that \(b \) is even, and therefore \(b = 2s \) for some integer \(s \). Therefore,

\[
2a + 3b = 2(2r + 1) + 3(2s) = 4r + 2 + 6s = 2(2r + 3s + 1).
\]

We know that \(2r + 3s + 1 \) is an integer, so that \(2a + 3b \) is twice an integer, and therefore is even.

Answer 2: (This incorporates a small shortcut that you may have noticed.) You know that \(b \) is even, and therefore \(b = 2s \) for some integer \(s \). Therefore,

\[
2a + 3b = 2a + 3(2s) = 2(a + 3s).
\]

We know that \(a + 3s \) is an integer, so that \(2a + 3b \) is twice an integer, and therefore is even.

2. (13 points) Suppose that the product of three positive real numbers \(x, y, \) and \(z \) is at least 70. Prove that at least one of \(x, y, \) and \(z \) is greater than 4.

We argue by contradiction. Suppose that \(x, y, \) and \(z \) are all positive integers which are less than or equal to 4. Then,

\[
x \cdot y \cdot z \leq 4 \cdot 4 \cdot 4 = 64,
\]

so that \(xyz < 64 \). However, this contradicts the assumption that \(xyz \geq 70 \). Therefore, at least one of \(x, y, \) and \(z \) is greater than 4.

3. (13 points) Determine whether the following statement is true or false, and prove or disprove it: If an integer \(a \) is of the form \(5n + 1 \) for some integer \(n \), then \(a^2 \) is of the form \(25m + 1 \) for some integer \(m \).

False. We exhibit a counterexample. Let \(n = 1 \) so that \(a = 6 \). Then, \(a^2 = 36 = 25 + 11 \). By the unique division-with-remainder theorem, \(a^2 \) cannot be of the form \(25m + 1 \) if it is of the form \(25b + 11 \) (where \(b = 1 \)).

4. (14 points) Prove that \(\sqrt[3]{4} \) is irrational.

You may use the following statement without proving it: For all integers \(a \), if \(a^3 \) is even then \(a \) is even.

Proof: Suppose to the contrary that \(\sqrt[3]{4} \) is rational, so that we can write it as a fraction \(\frac{a}{b} \), written where \(a \) and \(b \) are both positive and have no common factor. Then, cubing both sides
of \(\sqrt[3]{4} = \frac{a}{b} \), we get \(4 = \frac{a^3}{b^3} \), so that \(4b^3 = a^3 \). Thus, \(a^3 \) is even, and so \(a \) is also even, and we can write \(a = 2r \) for some integer \(r \). We have \(4b^3 = (2r)^3 \), so that \(b^3 = 2r^3 \). Therefore, \(b^3 \) is even, and hence \(b \) is even also.

But this shows that \(a \) and \(b \) are both even and have the common factor 2, contrary to assumption. This is a contradiction; therefore, \(\sqrt[3]{4} \) is irrational.

5. (14 points) Prove that \(\lim_{x \to 3} (2x + 1) = 7 \).

Proof: Suppose that \(\epsilon > 0 \) is given.

[Aside: Not needed for proof, but shows you how to pick \(\delta \). If \(2x + 1 = 7 + \epsilon \), then \(x = 3 + \epsilon/2 \), and similarly if \(2x + 1 = 7 - \epsilon \), then \(x = 3 - \epsilon/2 \). So we should pick \(\delta = \epsilon/2 \), or anything smaller.]

Choose \(\delta = \epsilon/2 \). Suppose that we are given \(x \) with \(|x - 3| < \delta \), i.e., \(3 - \epsilon/2 < x < 3 + \epsilon/2 \). Then, we have \(2(3 - \epsilon/2) + 1 < 2x + 1 < 2(3 + \epsilon/2) + 1 \), i.e., \(7 - \epsilon < 2x + 1 < 7 + \epsilon \). In other words \(|(2x + 1) - 7| < \epsilon \) whenever \(|x - 3| < \delta \). By definition, \(\lim_{x \to 3} (2x + 1) = 7 \) as desired.

6. (14 points) Prove, for all integers \(n \geq 1 \), that

\[
\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n \cdot (n + 1)} = \frac{n}{n + 1}.
\]

We prove this by induction. Let \(P(n) \) be the claim that

\[
\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n \cdot (n + 1)} = \frac{n}{n + 1}.
\]

Then \(P(1) \) is true because both sides are equal to \(1/2 \). Suppose now that \(P(n) \) is true for some particular \(n \). We need to show that \(P(n + 1) \) is true. The left hand side of \(P(n + 1) \) is

\[
\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n \cdot (n + 1)} + \frac{1}{(n + 1) \cdot (n + 2)}.
\]

By our inductive hypothesis (that \(P(n) \) is true), this is equal to

\[
\frac{n}{n + 1} + \frac{1}{(n + 1)(n + 2)} = \frac{n(n + 2)}{(n + 1)(n + 2)} + \frac{1}{(n + 1)(n + 2)}.
\]

This is equal to

\[
\frac{n(n + 2) + 1}{(n + 1)(n + 2)} = \frac{n^2 + 2n + 1}{(n + 1)(n + 2)} = \frac{(n + 1)^2}{(n + 1)(n + 2)} = \frac{n + 1}{n + 2},
\]

which is the right hand side of \(P(n + 1) \). Therefore \(P(n + 1) \) is true, and hence \(P(n) \) is true for all \(n \geq 1 \) by induction.

7. (14 points) Prove that \(1 + 3n \leq 4^n \) for every integer \(n \geq 0 \).

We argue by induction. Let \(P(n) \) be the claim \(1 + 3n \leq 4^n \). Then \(P(0) \) is true because both sides are equal to 1. Suppose now that \(P(n) \) is true for some particular \(n \). We want to prove that \(P(n + 1) \) is true.

The left side of \(P(n + 1) \) is equal to \(1 + 3(n + 1) = (1 + 3n) + 3 \). By induction, this is less than \(4^n + 3 \leq 4^n + 3 \cdot 4^n = 4^{n+1} \), so that \(P(n + 1) \) is true. The result follows by induction.
8. (5 points) Let S be the set of integers divisible by 3, and let T be the set of integers divisible by 6. Do we have $S \subseteq T$? Do we have $T \subseteq S$?

[For this problem, you do not have to give a proof or explanation (you should know how to – but time is short), but if your answer is wrong, this might be worth partial credit.]

We have $T \subseteq S$ but not $S \subseteq T$. If x is an integer divisible by 6, then $x = 6r$ for some integer r, so that $x = 3(2r)$, so that x is a multiple of 3 (i.e., an element of S). To see that $S \nsubseteq T$, observe that 3 is in S but not T.