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These notes will develop the theory of polynomial rings and their ideals.
Throughout, except where explicitly noted to the contrary, we write R for an arbitrary commutative ring

with unity. This theory is still interesting if you relax these applications! – but we will concentrate on the
most common case.

0.1 Polynomial rings

Definition 1 We write R[x] for the set of polynomials

a0 + a1x+ a2x
2 + · · ·+ anx

n,

where each of the ai is in R.

If an 6= 0 then we refer to n as the degree of the polynomial. (And if an = 0 then we rewrite our polynomial
so as to omit the zero coefficients, and the degree will be less than n.) The degree of a polynomial can be
any nonnegative integer, but not that we do not allow infinite power series.

Theorem 2 If R is a commutative ring with unity, then so is R[x].

The proof of this is rather boring and so we omit it. I presume that you are familiar with addition and
multiplication of polynomials, and could verify the associative and distributive laws step by step if forced to.

We also consider polynomial rings in multiple variables. We write R[x1, · · ·xr] for the ring of polynomials
in the variables x1 through xr; the elements of R[x1, · · ·xr] are precisely finite sums of terms of the form
axe11 x

e2
2 · · ·xerr , where a ∈ R and the ei are all nonnegative numbers.

We can also use other variables (i.e., write R[x, y] for the ring of polynomials with two variables).

Exercise 1 Explain informally why R[x, y] = (R[x])[y]. Generalize!

0.2 Ideals in polynomial rings

Recall that if R is any commutative ring with unity (where we most definitely include the case that R = S[x],
where S is some other commutative ring with unity), the principal ideal generated by an element r ∈ R is
the set

(r) := {ra : a ∈ R}.

Exercise 2 Prove (in this generality) that any principal ideal is, in fact, an ideal.

In polynomial rings we encounter ideals which are not principal.

Exercise 3 In the ring R[x, y], let I be the ideal of polynomials of degree at least one. Prove that I is a
nonprincipal ideal.
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Solution. Suppose that I = (f) for some polynomial f ∈ R[x, y]. Then x = g1f and y = g2f for some
polynomials g1 and g2. The only polynomials dividing x are of the form λ and λx, where λ is a unit of R,
and similarly the only polynomials dividing y are of the form λ and λy. The only polynomials dividing both
are of the form λ, and so f is a unit, but then I = (f) = R[x, y]. This is impossible as I does not contain
any constants.

Exercise 4 If I and J are ideals of R, let

I + J := {a+ b : a ∈ I, b ∈ J}.

1. Prove that I + J is an ideal.

2. Prove that I + J is the minimal ideal which contains both I and J . (In other words, prove that I + J
contains I and J , and that if K is any other ideal containing I and J we have I + J ⊆ K.)

3. Prove that in general I + J 6= I ∪ J . (It is enough to find a counterexample with R = Z.)

If r1, . . . rk ∈ R, then we write (r1, · · · rk) to mean (r1) + · · ·+ (rk).

Exercise 5 In Z, prove that the ideal (6, 11) is principal. (In other words, prove that it equals (a) for some
a ∈ Z.)

0.3 Polynomial rings as abelian groups

Recall that if R is any ring whatsoever, then (R,+) is an abelian group, and any subgroup is normal. In
particular, if I is any ideal of R, then (I,+) is a normal subgroup of R.

Exercise 6 Review the theory of quotient groups, normal subgroups, and homomorphisms – including The-
orem 13.2 of Saracino, or its equivalent in other books or your notes.

Exercise 7 Prove, as abelian groups, that

Z[x]/(x) ' Z.

The best way to do this is to construct a homomorphism Z[x]→ Z and prove that its kernel is (x).

Exercise 8 Prove, as abelian groups, that

Z[x]/(x2) ' Z× Z,

that
Z[x, y]/(x2, xy, y2) ' Z× Z× Z,

and that for any polynomial f of degree 3 we have

Z[x]/(f) ' Z× Z× Z.

Solution. For the first part, define a homomorphism φ : Z[x]→ Z× Z by

φ(a0 + a1x+ a2x
2 + · · · ) = (a0, a1).

Then its kernel is (x2), and therefore the result follows by the fundamental theorem of homomorphisms of
abelian groups. (The ‘First Isomorphism Theorem’). For the second homomorphism, define it similarly, and
take the constant, x, and y coefficients.

The third question is the Secret Bonus Question and the result is false. For example, if f = 2x3, then x3

is an element of order 2 in Z[x]/(f), but Z× Z× Z does not contain any nonzero elements of finite order.

Later, we will discuss a quotient ring structure: ‘ideal’ will turn out be the correct analogy of ‘abelian
group’.

Exercise 9 Prove, as abelian groups, that
C ' R× R.

Formally we have not yet learned what an isomorphism of rings is, but C is an integral domain and R× R
is not, so you can damn well guess that your isomorphism is not an isomorphism of rings.
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0.4 Division algorithm for F [x].

Please read Theorem 19.2, including its proof, in Saracino.

Exercise 10 Prove that the theorem still holds if the field F is replaced with any commutative ring with
unity R, provided that the leading coefficient of g(X) is a unit in R.

Moreover, find a counterexample that shows that the condition that the leading coefficient be a unit cannot
be removed. (I recommend looking for a counterexample in Z[x].)

0.5 Proving that F [x] is a principal ideal domain

Theorem 3 Let F be a field, and let I be any nonzero ideal of F [x]. Then I is a principal ideal.

(We call F [x] a principal ideal domain or PID.)
Proof: Let n be the minimal degree of any polynomial in I. Then, if I 6= F [x], we have n ≥ 1. (Why?)
Choose any polynomial f ∈ I which is of degree n. We claim that I = (f). To prove this, suppose g ∈ I− f .
Then, by the division algorithm, we may write uniquely

g = f · q + r,

where r has degree less than n. Now, we have f ∈ I and g ∈ I, so r = g− f · q ∈ I. Moreover, r 6= 0 because
g 6∈ (f).

But we have just found an element of I of degree less than n, which is a contradiction. 2

Exercise 11 That proof was really important and beautiful. Please read it again.

Exercise 12 In R[x], write the ideals (x3, x4), (x3, x4 + x2), and (x3, x5 − 2x+ 1) as principal ideals.

Solution. (x3, x4) is just (x3) because x4 is already a multiple of x2.
(x3, x4 + x2) contains x4 and x4 + x2, hence x2, and everything in the ideal is a multiple of x2. So this

ideal is (x2).
(x3, x5− 2x+ 1) is all of R[x]. This requires some trial and error. One way is to write 1 as an R[x]-linear

combination of x3 and x5 − 2x+ 1. (This is the Euclidean algorithm!! Review your Math 580.) You might
find it helpful to do this in steps. First of all, the ideal contains −2x + 1. Now cube that and subtract an
appropriate multiple of x3 to find another polynomial this ideal contains. Etc., etc. A lot of trial and error.

(Discuss the primality and maximality of various ideals of R[x] and R[x, y].)

3


