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19.2. (g). Is x4 − 3x2 + 6x+ 1 irreducible?
No, Eisenstein’s criterion doesn’t apply, even after the trick. This question requires a small amount of

brute force.
It it were reducible, it would factor over Z by Gauss’s lemma. First of all, check that it doesn’t have any

roots (and therefore no linear factors). For example, check directly that x = −2,−1, 0, 1, 2 are not roots,
and then use an inequality to argue that if |x| ≥ 3 the same is true.

Therefore, if it factored we would have

x4 − 3x2 + 6x+ 1 = (x2 + ax+ b)(x2 + cx+ d).

But a = −c (why?) and bd = 1, so b = d = 1 or b = d = −1. Keep going along these lines to obtain a
contradiction.

20.6 (a). This is basically (part of) Theorem 22.3. Evidently these are all elements of K. If we have

a0 + a1X + · · · an−1X
n−1

= b0 + b1X + · · · bn−1X
n−1

then, by definition, we have

(a0 − b0) + (a1 − b1)X + · · ·+ (an−1 − bn−1)Xn−1 ∈ (f(X)).

Since f is of degree n, this is only possible if this is the zero polynomial, i.e. if all the ai are equal to the
corresponding bi.

Finally, we must prove that any element of K can be written in such a fashion. Write φ for the quotient
homomorphism F [X]→ F [X]/(f(X)). Given any α ∈ K, choose any polynomial g such that φ(g) = α. By
the division algorithm, we can write g = fq + r for f, r ∈ F [X] with r = 0 or deg(r) < n.We have that
φ(g) = φ(r). Writing r as a polynomial of degree less than n (or the zero polynomial), φ(r) is just the same
polynomial with each X replaced by X; i.e., it is a polynomial of the form given in the question.

20.10. (a). Consider the ideal
I = {af + bg |a, b ∈ F [x]}.

By Theorem 20.1, I = (h) for some polynomial h ∈ F [x]. In particular h | f and h | g (since f = 1 · f + 0 · g
and similarly g are in I). Moreover, if k divides both f and g in F [x], then any k divides any F [x]-linear
combination of f and g and in particular h. This is what is required to be proved.

(b). Suppose that h1 and h2 are two gcd’s of f and g. By property (ii) we have h1 | h2 and h2 | h1 so
that h2 = uh1 for some unit u ∈ F [x], i.e., a nonzero constant.

20.11. We omit the ‘only if’ part and prove the ‘if’ part here. Suppose f(x) has a nontrivial factorization
f = gh in F [x]. Use Corollary 20.4 to write

g(x) = (x− c1) · · · (x− cn)

in K[x] for some extension K of F , where 1 ≤ n < p. Write c =
∏n

i=1 ci. Note that c ∈ F because it is plus
or minus the last coefficient of g(x), which is in F [x].
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Now, each of the ci is a pth root of a. Therefore, cp = an. Because (p, n) = 1 we may write 1 = pr + ns
for some r, s ∈ Z. Therefore a = apr+ns = aprcps = (arcs)p. Since a, c ∈ F we have arcs ∈ F , i.e., a has a
pth root in F , and so it must be a root of f in F .

22.3. (Summary.) We have [E : Q] = 8. Follow example 1 on p. 235, it’s kind of a tedious kludge but
not actually hard. I don’t know of a slick proof that doesn’t use Galois theory.

22.4. We know that [Q(
√

2) : Q] = 2. Now,
√

1 +
√

2 is a root of the polynomial x2−(1+
√

2) in Q(
√

2),

so if that is irreducible we will know that [Q(
√

1 +
√

2 : Q] = [Q(
√

1 +
√

2 : Q(
√

2)][Q(
√

2) : Q] = 4.
To prove this, write

x2 − (1 +
√

2) = (x+ a+ b
√

2)(x+ c+ d
√

2)

for some a, b, c, d ∈ Q. Foiling, we get −(1 +
√

2) = (ad+ bc)
√

2, or −1− (1 + ad+ bc)
√

2 = 0; since {1,
√

2}
is a basis for Q(

√
2) over Q, hence linearly independent, so this can’t happen.

22.5 1+i√
2

is a root of x4 +1. You can show by the usual Eisenstein and f(x+1) trick that this polynomial

is irreducible, hence [E : Q] = 4.
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