Math 547/702I – Some Solutions

Frank Thorne

April 28, 2015

19.2. (g). Is $x^4 - 3x^2 + 6x + 1$ irreducible?

No, Eisenstein's criterion doesn't apply, even after the trick. This question requires a small amount of brute force.

It it were reducible, it would factor over \mathbb{Z} by Gauss's lemma. First of all, check that it doesn't have any roots (and therefore no linear factors). For example, check directly that x = -2, -1, 0, 1, 2 are not roots, and then use an inequality to argue that if $|x| \ge 3$ the same is true.

Therefore, if it factored we would have

$$x^{4} - 3x^{2} + 6x + 1 = (x^{2} + ax + b)(x^{2} + cx + d).$$

But a = -c (why?) and bd = 1, so b = d = 1 or b = d = -1. Keep going along these lines to obtain a contradiction.

20.6 (a). This is basically (part of) Theorem 22.3. Evidently these are all elements of K. If we have

$$a_0 + a_1\overline{X} + \dots + a_{n-1}\overline{X}^{n-1} = b_0 + b_1\overline{X} + \dots + b_{n-1}\overline{X}^{n-1}$$

then, by definition, we have

$$(a_0 - b_0) + (a_1 - b_1)X + \dots + (a_{n-1} - b_{n-1})X^{n-1} \in (f(X)).$$

Since f is of degree n, this is only possible if this is the zero polynomial, i.e. if all the a_i are equal to the corresponding b_i .

Finally, we must prove that any element of K can be written in such a fashion. Write ϕ for the quotient homomorphism $F[X] \to F[X]/(f(X))$. Given any $\alpha \in K$, choose any polynomial g such that $\phi(g) = \alpha$. By the division algorithm, we can write g = fq + r for $f, r \in F[X]$ with r = 0 or deg(r) < n. We have that $\phi(g) = \phi(r)$. Writing r as a polynomial of degree less than n (or the zero polynomial), $\phi(r)$ is just the same polynomial with each X replaced by \overline{X} ; i.e., it is a polynomial of the form given in the question.

20.10. (a). Consider the ideal

$$I = \{af + bg \mid a, b \in F[x]\}.$$

By Theorem 20.1, I = (h) for some polynomial $h \in F[x]$. In particular $h \mid f$ and $h \mid g$ (since $f = 1 \cdot f + 0 \cdot g$ and similarly g are in I). Moreover, if k divides both f and g in F[x], then any k divides any F[x]-linear combination of f and g and in particular h. This is what is required to be proved.

(b). Suppose that h_1 and h_2 are two gcd's of f and g. By property (ii) we have $h_1 | h_2$ and $h_2 | h_1$ so that $h_2 = uh_1$ for some unit $u \in F[x]$, i.e., a nonzero constant.

20.11. We omit the 'only if' part and prove the 'if' part here. Suppose f(x) has a nontrivial factorization f = gh in F[x]. Use Corollary 20.4 to write

$$g(x) = (x - c_1) \cdots (x - c_n)$$

in K[x] for some extension K of F, where $1 \le n < p$. Write $c = \prod_{i=1}^{n} c_i$. Note that $c \in F$ because it is plus or minus the last coefficient of g(x), which is in F[x].

Now, each of the c_i is a *p*th root of *a*. Therefore, $c^p = a^n$. Because (p, n) = 1 we may write 1 = pr + ns for some $r, s \in \mathbb{Z}$. Therefore $a = a^{pr+ns} = a^{pr}c^{ps} = (a^rc^s)^p$. Since $a, c \in F$ we have $a^rc^s \in F$, i.e., *a* has a *p*th root in *F*, and so it must be a root of *f* in *F*.

22.3. (Summary.) We have $[E : \mathbb{Q}] = 8$. Follow example 1 on p. 235, it's kind of a tedious kludge but not actually hard. I don't know of a slick proof that doesn't use Galois theory.

22.4. We know that $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2$. Now, $\sqrt{1+\sqrt{2}}$ is a root of the polynomial $x^2 - (1+\sqrt{2})$ in $\mathbb{Q}(\sqrt{2})$, so if that is irreducible we will know that $[\mathbb{Q}(\sqrt{1+\sqrt{2}}:\mathbb{Q}] = [\mathbb{Q}(\sqrt{1+\sqrt{2}}:\mathbb{Q}(\sqrt{2}))][\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 4$.

To prove this, write

 $x^{2} - (1 + \sqrt{2}) = (x + a + b\sqrt{2})(x + c + d\sqrt{2})$

for some $a, b, c, d \in \mathbb{Q}$. Foiling, we get $-(1+\sqrt{2}) = (ad+bc)\sqrt{2}$, or $-1 - (1+ad+bc)\sqrt{2} = 0$; since $\{1, \sqrt{2}\}$ is a basis for $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} , hence linearly independent, so this can't happen.

22.5 $\frac{1+i}{\sqrt{2}}$ is a root of $x^4 + 1$. You can show by the usual Eisenstein and f(x+1) trick that this polynomial is irreducible, hence $[E:\mathbb{Q}] = 4$.