Quiz 8 - Math 374, Frank Thorne (thorne@math.sc.edu)

Monday, March 23, 2015

A sequence is defined recursively by $s_0 = 3$, and $s_k = s_{k-1} + 2k$ for all integers $k \ge 1$. Guess, and then prove (by mathematical induction) an explicit formula for the sequence s_n .

Hint: Look for a formula of the form $s_n = n^2 + *$, where * is something simple.

Solution.

Work out some small values of s_n : $s_0 = 3$, $s_1 = 5$, $s_2 = 9$, $s_3 = 15$, $s_4 = 23$, $s_5 = 33$, and so on. Following the hint, and comparing these to n^2 , we see that each s_n is n+3 larger than n^2 . In other words, $s_n = n^2 + n + 3$.

We now prove this for all $n \ge 0$. The base case says that $s_0 = 0^2 + 0 + 3 = 3$, which is true. So, assume that $s_k = k^2 + k + 3$ for an arbitrary integer $k \ge 0$. We must prove that $s_{k+1} = (k+1)^2 + (k+1) + 3$.

We have that

$$s_{k+1} = s_k + 2(k+1) = k^2 + k + 3 + 2(k+1) = k^2 + 3k + 5,$$

by (in order): the recursive definition of s_k , the inductive hypothesis, and algebra.

But we have also that

$$(k+1)^{2} + (k+1) + 3 = (k^{2} + 2k + 1) + (k+1) + 3 = k^{2} + 3k + 5$$

Therefore, $s_{k+1} = (k+1)^2 + (k+1) + 3$ as desired. Hence the result follows for all integers $n \ge 0$ by induction.