Quiz 8 - Math 374, Frank Thorne (thorne@math.sc.edu)

Monday, March 23, 2015

A sequence is defined recursively by $s_{0}=3$, and $s_{k}=s_{k-1}+2 k$ for all integers $k \geq 1$. Guess, and then prove (by mathematical induction) an explicit formula for the sequence s_{n}.

Hint: Look for a formula of the form $s_{n}=n^{2}+*$, where $*$ is something simple.
Solution.
Work out some small values of $s_{n}: s_{0}=3, s_{1}=5, s_{2}=9, s_{3}=15, s_{4}=23, s_{5}=33$, and so on. Following the hint, and comparing these to n^{2}, we see that each s_{n} is $n+3$ larger than n^{2}. In other words, $s_{n}=n^{2}+n+3$.

We now prove this for all $n \geq 0$. The base case says that $s_{0}=0^{2}+0+3=3$, which is true. So, assume that $s_{k}=k^{2}+k+3$ for an arbitrary integer $k \geq 0$. We must prove that $s_{k+1}=(k+1)^{2}+(k+1)+3$.

We have that

$$
s_{k+1}=s_{k}+2(k+1)=k^{2}+k+3+2(k+1)=k^{2}+3 k+5,
$$

by (in order): the recursive definition of s_{k}, the inductive hypothesis, and algebra.
But we have also that

$$
(k+1)^{2}+(k+1)+3=\left(k^{2}+2 k+1\right)+(k+1)+3=k^{2}+3 k+5 .
$$

Therefore, $s_{k+1}=(k+1)^{2}+(k+1)+3$ as desired. Hence tne result follows for all integers $n \geq 0$ by induction.

