Quiz 7 - Math 374, Frank Thorne (thorne@math.sc.edu)

Monday, March 16, 2015
Prove, using mathematical induction, that

$$
5^{n}+9<6^{n}
$$

for all integers $n \geq 2$.
Solution. First of all, observe that $5^{2}+9<6^{2}$, because this just says that $34<36$.
Now, suppose that $5^{k}+9<6^{k}$ for an arbitrary integer $k \geq 2$. We want to prove that $5^{k+1}+9<$ 6^{k+1}, and then this establishes the proof of the statement for all $n \geq 2$ by induction.

The idea is that the function on the right is growing faster than that on the left.
Proof 1. We have

$$
5^{k+1}+9=5 \cdot 5^{k}+9<5 \cdot\left(6^{k}-9\right)+9
$$

by using the inductive hypothesis in the alternative form $5^{k}<6^{k}-9$. Now, we have

$$
5 \cdot\left(6^{k}-9\right)+9=5 \cdot 6^{k}-45+9=5 \cdot 6^{k}-36
$$

But, $5 \cdot 6^{k}<6 \cdot 6^{k}=6^{k+1}$ and $-36<0$, so that this quantity is less than 6^{k+1}. Therefore, $5^{k+1}+9<6^{k+1}$, as desired.

Proof 2. Given that $5^{k}+9<6^{k}$, add $4 \cdot 5^{k}$ to both sides, so that we get $5 \cdot 5^{k}+9<6^{k}+4 \cdot 5^{k}$, i.e. $5^{k+1}+9<6^{k}+4 \cdot 5^{k}$. But,

$$
6^{k}+4 \cdot 5^{k}<6^{k}+5 \cdot 6^{k}=6 \cdot 6^{k}=6^{k+1}
$$

so that $5^{k+1}+9<6^{k}$, as desired.
Other variations are possible as well. There is no one right way to prove this fact, and a little bit of creativity is required. One advantage you have is that the inequality to be proved is true by a large margin - so that you have quite a bit of 'wiggle room', so to speak.

