Quiz 6 - Math 374, Frank Thorne (thorne@math.sc.edu)

Monday, March 2, 2015

Prove, using mathematical induction, that

$$
\sum_{i=1}^{n+1} i \cdot 2^{i}=n \cdot 2^{n+2}+2
$$

for all integers $n \geq 0$.
Solution. For $n=0$, the statement says that

$$
\sum_{i=1}^{1} i \cdot 2^{i}=0 \cdot 2^{0+2}+2
$$

i.e., that $2=2$, which is true.

Now, let $k \geq 0$ be an arbitrary positive integer and assume that the statement is true for $n=k$. Then, by rewriting the sum we have

$$
\sum_{i=1}^{(k+1)+1} i \cdot 2^{i}=\left(\sum_{i=1}^{k+1} i \cdot 2^{i}\right)+(k+2) \cdot 2^{k+2} .
$$

(The part outside the big parentheses is the $i=(k+1)+1=k+2$ term.)
We use the inductive hypothesis to rewrite the first sum on the right, and obtain

$$
\sum_{i=1}^{(k+1)+1} i \cdot 2^{i}=k \cdot 2^{k+2}+2+(k+2) \cdot 2^{k+2}
$$

Upon using algebra to rearrange the right hand side, we see that we have

$$
\begin{aligned}
\sum_{i=1}^{(k+1)+1} i \cdot 2^{i} & =(k+k+2) \cdot 2^{k+2}+2 \\
& =(2 k+2) \cdot 2^{k+2}+2 \\
& =2(k+1) \cdot 2^{k+2}+2 \\
& =(k+1) \cdot 2^{k+3}+2 \\
& =(k+1) \cdot 2^{(k+1)+2}+2
\end{aligned}
$$

Therefore, the statement is true for $n=k+1$, so that the result follows by induction.
(Makeup problem on next page)

Makeup problem (March 4, 2015)

Prove by induction that $7^{n}-2^{n}$ is divisible by 5 for each integer $n \geq 0$.
Solution. For $n=0,7^{n}-2^{n}=1-1=0$ which is divisible by 5 .
So assume, for an arbitrary integer $k \geq 0$, that $7^{k}-2^{k}$ is divisible by 5 . Then,

$$
7^{k+1}-2^{k+1}=7 \cdot 7^{k}-2 \cdot 2^{k}=(5+2) \cdot 7^{k}-2 \cdot 2^{k}
$$

Using algebra to rearrange, this equals

$$
5 \cdot 7^{k}+2 \cdot\left(7^{k}-2^{k}\right)
$$

By assumption, $7^{k}-2^{k}$ is divisible by 5 . Therefore $2 \cdot\left(7^{k}-2^{k}\right)$ is also divisible by 5 , and since $5 \cdot 7^{k}$ is a multiple of 5 the entire expression is divisible by 5 . Therefore the result follows for $k+1$, and hence for all $n \geq 0$ by induction.

