Quiz 4 - Math 374, Frank Thorne (thorne@math.sc.edu)

Monday, February 9, 2015

(1) Let D be the set of all USC students, let $M(s)$ be " s is a math major", let $C(s)$ be " s is a computer science student", and let $E(s)$ be " s is an engineering student". Express each of the following statements using quantifiers, variables, and the predicates $M(s), C(s)$, and $E(s)$.
(a) There is an engineering student who is a math major.

Solution: $\exists x \in D, E(x) \wedge M(x)$. In particular, the sentence has the same literal meaning (with a different emphasis) as 'There is a math major who is an engineering student.'
(b) Some computer science students are also math majors.

Solution: $\exists x \in D, C(x) \wedge M(x)$.
(c) Some computer science students are engineering students and some are not.

Solution: $(\exists x \in D, C(x) \wedge M(x)) \wedge(\exists x \in D, C(x) \wedge \sim M(x))$.
In particular, note that the statement describes the existence of two different kinds of students. Therefore it needs multiple \exists quantifiers to express.
(2) Write negations for each of the following statements.
(a) \forall computer programs P, if P compiles without error messages, then P is correct.

Solution: There exists a computer program P, such that P compiles without error messages and P is not correct.
A useful intermediate step is: There exists a computer program P, such that NOT (if P compiles without error messages, then P is correct). Then one remembers what the negation of an implication is.
(b) $\forall x \in \mathbb{R}$, if $x(x+1)>0$ then $x>0$ or $x<-1$.

Solution: $\exists x \in \mathbb{R}, x(x+1)>0 \wedge(x \leq 0) \wedge(x \geq-1)$. It is also correct to put English 'and' in place of the \wedge symbols. Yet another correct variation replaces the two inequalities with $-1 \leq x \leq 0$. (Indeed, this is probably best.)
To come up with this, it might help again to write out the intermediate step:
$\exists x \in \mathbb{R}, \sim($ if $x(x+1)>0$ then $x>0$ or $x<-1)$.

