
Midterm Examination 2 - Math 374, Frank Thorne (thorne@math.sc.edu)

Wednesday, March 27, 2015

Please work without books, notes, calculators, or any assistance from others.
There are five questions. In each case give a proof by mathematical induction – regular induc-

tion, strong induction, or structural induction as appropriate. Your best four solutions will be worth
25 points each and your worst will be thrown out.

(1) Prove, for all integers n ≥ 1, that
n∑

i=1

(2i− 1) = n2.

Solution. Let P (n) be the statement
∑n

i=1(2n − 1) = n2. We prove P (n) for all n ≥ 1 by
induction.

The base case P (1) is true because

1∑
i=1

(2i− 1) = 2 · 1 − 1 = 1 = 12.

Now, suppose that P (k) is true for an arbitrary k ≥ 1. We have

k+1∑
i=1

(2i− 1) =
k∑

i=1

(2i− 1) + (2(k + 1) − 1).

Using the inductive hypothesis, this equals

k2 + (2(k + 1) − 1) = k2 + (2k + 2 − 1) = k2 + 2k + 1.

Since this equals (k + 1)2, P (k + 1) is true, so that the result follows by induction.

(2) Prove, for all integers n ≥ 2, that
3 + 5n ≤ 4n.

Solution. Let P (n) be the statement 3 + 5n ≤ 4n. The base case n = 2 is true because it says
that 13 ≤ 16.

Now, suppose that P (k) is true for an arbitrary k ≥ 2. We must prove P (k + 1). In other
words, given that 3 + 5k ≤ 4n, we must prove that 3 + 5(k + 1) = 8 + 5k ≤ 4k+1.

We are adding 5 to the left side and 3·4k to the right side. Since k ≥ 2, we have 3·4k ≥ 3·16 = 48,
so we have 5 ≤ 3 · 4k. Therefore,

8 + 5k = 5 + (3 + 5k) ≤ 3 · 4k + 4k,



where we used the above algebra and the inductive hypothesis to give upper bounds for 5 and
3 + 5k respectively. Since the right side of this expression equals 4k+1, the result follows for all
k ≥ 2 by induction.

Alternate solution. We skip to the proof of P (k + 1) (the rest of the solution is the same
as the first solution). Multiplying the inductive hypothesis 3 + 5k ≤ 4k by 4 we see that
12 + 20k ≤ 4k+1. We know that

3 + 5(k + 1) = 8 + 5k ≤ 12 + 20k ≤ 4k+1,

so that P (k + 1) is true.

(3) Suppose that a0, a1, a2, · · · is a sequence defined by

a0 = 5, a1 = 16, and ak = 7ak−1 − 10ak−2 for all integers k ≥ 2.

Prove, for all integers n ≥ 0, that

an = 3 · 2n + 2 · 5n.

Solution. We have two base cases to check. We have that

3 · 20 + 2 · 50 = 3 + 2 = 5 = a0,

3 · 21 + 2 · 51 = 6 + 10 = 16 = a1.

Now, assume that the equality holds for all i with 0 ≤ i ≤ k; by strong induction the equality
holds for all n ≥ 0 if we can prove it for k + 1.

We have
3 · 2k+1 + 2 · 5k+1 = 3 · 2 · 2k + 2 · 5 · 5k = 6 · 2k + 10 · 5k,

and we want to prove that ak+1 equals this. We have, by definition,

ak+1 = 7ak − 10ak−1.

Applying the inductive hypothesis for both ak and ak−1 (this is the strong induction step) we
have

ak+1 = 7(3 · 2k + 2 · 5k) − 10(3 · 2k−1 + 2 · 5k−1) = 21 · 2k + 14 · 5k − 30 · 2k−1 − 20 · 5k−1.

Since 2k−1 = 1
2
2k and 5k−1 = 1

5
5k we have

ak+1 = 21 · 2k + 14 · 5k − 15 · 2k − 4 · 5k = 6 · 2k − 10 · 5k,

the same expression as above. So the result follows by induction.



(4) Define a sequence by a1 = 2 and ak+1 = 2ak−1 for all k ≥ 1. Guess, and then prove, an explicit
formula for an which is valid for all n ≥ 0.

Hint: The sequence is approximately doubling at each step. This information might inform a
preliminary guess, which you can then adjust.

Solution. We write out the first few terms. a1 = 2, a2 = 3, a3 = 5, a4 = 9, a5 = 17. We see
that these are one higher than powers of two, which is consistent with the hint. (The sequence
would be powers of two if it were exactly doubling at each step.) The powers of two are offset
by 1 and by a little bit of trial and error we write down an = 1 + 2n−1.

To prove this by induction, note first that a1 = 2 = 1 + 21−1. Now, assume the formula holds
for n = k for some k ≥ 1. Then,

ak+1 = 2ak − 1 = 2(1 + 2k−1) − 1 = 2 + 2k − 1 = 2k + 1,

so that the result holds by induction.

(5) A set S of arithmetic expressions is given by the following recursive definition.

• (Base) Any number is in S. (By a number I mean something like 73 or π, but an expression
like 5 ∗ 8 which has to be computed first.)

• (Recursion) If A and B are in S, then (A+B) is in S.

• (Recursion) If A and B are in S, then (A ∗B) is in S.

• (Restriction) Nothing else is in S.

So, for example, a typical element of S looks something like

(((7 ∗ 9) ∗ (3 + 2)) + 5).

Prove that any arithmetic expression in S contains more numbers than plus signs.

Solution. We do this by structural induction. In the base case, any number contains one
number and no plus signs. So certainly the statement to be proved holds.

Now, assume that A and B are in S and have more numbers than plus signs. We must prove
that (A+B) and (A ∗B) both have more numbers than plus signs.

Suppose that A has m numbers and B has n numbers. Then, by the inductive hypothesis, A
has at most m− 1 plus signs and B has at most n− 1 plus signs. (A+B) has m+ n numbers
(the total number in A and B), and it has at most (m− 1) + (n− 1) + 1 = m+n− 1 plus signs
(the total number in A and B, plus the one connecting them). So, (A+B) has more numbers
than plus signs, as desired.

Similarly, (A ∗B) has m+n numbers and at most m+n− 2 plus signs (because this time they
are not connected with a plus sign.) So, (A ∗B) has more numbers than plus signs, as desired.

Since the base case is proved, and the inductive step is proved for each of the two pieces of the
recursive definition, the result follows by structural induction.


