Inference Rules (corrected) - Math 374, Frank Thorne (thorne@math.sc.edu)

You may print out a copy of this sheet and bring and use it on quizzes and exams.

Equivalence Rules:

- 1. Commutative: $P \land Q$ is equivalent to $Q \land P$; $P \lor Q$ is equivalent to $Q \lor P$.
- 2. Associative: $(P \land Q) \land R$ is equivalent to $P \land (Q \land R)$; $(P \lor Q) \lor R$ is equivalent to $P \lor (Q \lor R)$.
- 3. De Morgan: $(P \lor Q)'$ is equivalent to $P' \land Q'$; $(P \land Q)'$ is equivalent to $P' \lor Q'$.
- 4. Implication: $P \to Q$ is equivalent to $P' \lor Q$.
- 5. Double negation: P is equivalent to (P')'.
- 6. Equivalence: $P \leftrightarrow Q$ is equivalent to $(P \rightarrow Q) \land (Q \rightarrow P)$.

Inference Rules (Gersting, p. 25):

- 1. Modus ponens: From P and $P \rightarrow Q$, you may conclude Q.
- 2. Modus tollens: From $P \to Q$ and Q', you may conclude P'.
- 3. Conjunction: From P and Q, you may conclude $P \wedge Q$.
- 4. Simplification: From $P \wedge Q$, you may conclude P and Q.
- 5. Addition: From P, you may conclude $P \lor Q$.

Three More Inference Rules:

- 1. Elimination: From $P \lor Q$ and Q', you may conclude P. From $P \lor Q$ and P', you may conclude Q.
- 2. Transitivity: From $P \to Q$ and $Q \to R$, you may conclude $P \to R$.
- 3. Cases: From $P \lor Q$, $P \to R$, and $Q \to R$, you may conclude R.

Inference Rules with Quantifiers (Gersting, p. 50):

1. Universal instantiation: From $(\forall x)P(x)$, you can derive P(t), where t is a variable or constant symbol.

Restriction: If t is a variable, it must not fall within the scope of a quantifier for t.

2. Existential instantiation: From $(\exists x)P(x)$, you can derive P(a), where a is a constant symbol not previously used in proof sequence.

Restriction. Must be the first rule used that introduces a.

3. Universal generalization: From P(x), you can derive $(\forall x)P(x)$.

Restriction: (1) P(x) has not been deduced from any hypotheses in which x is a free variable. (2) P(x) has not been deduced by existential instantiation from any wff in which x is a free variable.

4. Existential generalization: From P(x), or from P(a) where a is a constant symbol, you can derive $(\exists x)P(x)$.

Restriction: To go from P(a) to $(\exists x)P(x)$, x must not appear in P(a).