(a) What is a Taylor series? Why is the formula for it true?

(b) Find the Maclaurin (Taylor) series for the following functions. Determine their radii of convergence.

- \(f(x) = x^2 \)
- \(f(x) = e^x \)
- \(f(x) = e^{2x} \)
- \(f(x) = \cos(x) \)
- \(f(x) = \sin(x) \)
- \(f(x) = \cos(4x) \)
- \(f(x) = \sin(x^2) \)
- \(f(x) = x^3 \sin(x) \)
- \(f(x) = x + e^x \).

(c) Explain why the Taylor series for \(e^x \) gives you a formula for \(e \).

(d) Compute \(e \), as a fraction or decimal, to fairly good accuracy. Your estimate should plausibly be within \(\frac{1}{10} \), but you don’t need to show this.

(e) Compute \(1/e \), as a fraction or decimal, to fairly good accuracy. Your estimate should plausibly be within \(\frac{1}{100} \), but you don’t need to show this.

(f) Compute \(\sin(1/10) \), as a fraction or decimal, to fairly good accuracy. Your estimate should plausibly be within \(\frac{1}{100} \).

(g) Compute \(\sqrt{1.1} \), as a fraction or decimal, to fairly good accuracy. Your estimate should plausibly be within \(\frac{1}{1000} \), but you don’t need to show this.

(h) Stewart, 11.10, 29, 30.

Additional problems:

(a) Stewart, 11.10, 15, 16, 31-36.

Bonus: Use Taylor series to explain why \(e^{ix} = \cos(x) + i\sin(x) \).