Homework 10 - Math 141, Frank Thorne (thornef@mailbox.sc.edu)

Due Wednesday, November 14

(a) What is an indefinite integral? Explain thoroughly.
(b) What is a definite integral? Explain thoroughly and draw a picture.
(c) Graph the function $y=x^{2}$, and estimate $\int_{0}^{1} x^{2} d x$ by dividing $[0,1]$ into four, then six, then eight intervals.
(d) Graph the function $y=x^{3}$ and estimate $\int_{0}^{1} x^{3} d x$ by dividing $[0,1]$ into two, three, four intervals.
(e) Graph the function $y=x$ and estimate $\int_{0}^{1} x d x$ by dividing $[0,1]$ into four, then six, then eight intervals. Then, evaluate $\int_{0}^{1} x d x$ using geometry and compare your answers.
(f) Evaluate $\int_{0}^{4} \sqrt{4-(x-2)^{2}} d x$ using geometry.
(g) Evaluate $\int_{0}^{4} \sqrt{4 x-x^{2}} d x$ using geometry.
(h) Evaluate $\int_{0}^{3} 4 x d x$ using geometry.
(i) Evaluate $\int_{-2}^{0} 3 x d x$ using geometry.
(j) Evalute $\int_{-4}^{4} \frac{x}{2} d x$ using geometry.
(k) Evaluate $\int_{-2}^{5}(x+3) d x$ using geometry.
(l) What does the Fundamental Theorem of Calculus say, and why is it true? Explain carefully and throughly.
(m) Stewart, Ch. 4.9, 49-52, 57, 63. (Recall that the velocity function is the derivative of the position function, and the acceleration is the derivative of the velocity. In 63 , use $a(t)=-10 \mathrm{~m} / \mathrm{s}^{2}$.)
(n) Stewart, Ch. 5.3, 4, 7, 8.
(o) Stewart, Ch. 5.3, 19-40, omit 34 (even).
(p) Stewart, Ch. 5.3, 43.

Additional problems:
(a) Stewart, Ch. 5.3, 19-40 (odd).

Bonus: 5.3, 76 .

