Math 575
Problem Set 8

1. Find a tree and an ordering of the vertices of that tree so that a greedy coloring with respect to that ordering will require five colors.

2. Suppose that G is a graph and A and B are induced subgraphs of G such that every vertex of A is adjacent to every vertex of B. Then we write $G = A \oplus B$.

Show that if $G = A \oplus B$, then $\chi(G) = \chi(A) + \chi(B)$ and $\omega(G) = \omega(A) + \omega(B)$.

3. **Prove:** If G is k-chromatic, then G contains at least k vertices of degree at least $k - 1$.

Solution: Consider any good k-coloring of the graph with the 'colors' 1, 2, ..., k.

For each color j, there is some vertex v of that color that cannot be re-colored another color (or else we could color G with $k - 1$ colors. If v were not adjacent to at least one vertex of each of the other colors, then we could recolor it. Thus v must have degree at least $k - 1$.

Hint: Show that for any k-coloring of G, there is a vertex of each color that has degree at least $k - 1$.

4. **Recall that the independence number, β, of a graph is the maximum number of vertices in an independent subset of the vertices.**

Show that for any graph on n vertices,

(i). $\chi(G) \geq \frac{n}{\beta(G)}$.

(ii). $\chi(G) \leq n - \beta(G) + 1$.

Solution:

(i). Suppose that G has chromatic number k and that we have colored the vertices of G with the colors 1, 2, 3, ..., k. Let the color classes of this coloring be V_1, V_2, \ldots, V_k. Then $|V_i| \leq \beta(G)$ since each color class is an independent set of vertices, for every $1 \leq i \leq k$. So,

$$n = \sum_{i=1}^{k} \beta(G) = k \beta(G) = \chi(G) \beta(G).$$

And the result follows upon division by $\beta(G)$.

(ii). Let S be a maximum independent set of vertices of G. Color all the vertices of S with the color 1. Color each of the remaining $n - \beta$
vertices a different color. We have used \(n - \beta + 1 \) colors. Since the chromatic number represents the smallest number of colors needed, we get that \(\chi(G) \leq \frac{n}{\beta(G)} \).

5. **Prove:** For any graph \(\chi(G)\chi(\overline{G}) \geq n \).

 Solution. We have \(\chi(\overline{G}) \geq \omega(\overline{G}) = \beta(G) \). Thus, \(\chi(G)\chi(\overline{G}) \geq \chi(G)\beta(G) \geq n \), by the previous problem (part (i)).

6. **G is** \(k \)-critical with respect to the chromatic number (and we say that \(G \) is chromatic critical) if \(\chi(G) = k \) and \(\chi(G - v) = k - 1 \) for every vertex \(v \) of \(G \). Show that if \(G \) is a \(k \)-critical graph, then \(\delta(G) \geq k - 1 \).

 Solution. Let \(v \) be any vertex of \(G \). Then since \(G \) is \(k \)-critical, \(\chi(G - v) = k - 1 \). So color \(G - v \) with \(k - 1 \) colors. Then since \(G \) itself cannot be colored with \(k - 1 \) colors, \(v \) must be adjacent to a vertex of each of these \(k - 1 \) colors or else we could assign \(v \) one of these colors and get a good \(k - 1 \) coloring of \(G \).

7. Suppose that \(G \) is a \(k \)-chromatic graph and \(v \) and \(u \) are vertices of \(G \) such that \(N(v) \subseteq N(u) \). Show that \(G \) is not a chromatic critical graph.

8. Suppose that \(G \) is a \(k \)-chromatic graph and that \(V(G) \) has been colored using the colors \{1, 2, 3, …, \(k \)\}. Then show that for any permutation of the colors 1, 2, …, \(k \), there is a path in \(G \) on \(k \) vertices whose vertices have the colors in that order.

9. **Prove:** If \(G \) is a connected graph with maximum degree \(\Delta \) and \(G \) is not regular, then \(\chi(G) \leq \Delta \).

 Hint: This is harder than the rest. As a hint, begin with the fact that if \(G \) is not regular, then there exists a vertex \(v \) such that \(\delta(v) < \Delta \). Now use the fact that every connected graph has at least two vertices that are not cut-vertices to construct a permutation that will not require more than \(\Delta \) colors for a greedy coloring.