
Math 575
Problem Set 13

1. Show that the square of a path Pn  (n ≥ 3) is Hamiltonian.

2. Suppose that G is a plane graph that has 15 edges in the boundary of its  exterior region and all 
the other regions of G contain 4, 6, or 8 edges  in their boundary. Use Grinberg’s Theorem to 
show that G cannot contain a Hamiltonian cycle.

Solution: Grinberg’s Equation reduces to 2Δf4 + 4Δf6 + 6Δf8 = 13 , which is impossible since 

the left-hand expression must be even and the right hand side is odd.

3. The graph below is Hamiltonian. 
(a). Show for any Hamiltonian cycle C for the graph, that the inner 5-region lies outside C.
(b). How many of the 4-regions are inside C, and how many are outside C? 
(c). Check your answers by looking at an actual Hamiltonian cycle in this graph.

Solution: 
(a). The Grinberg equation for this graph is 2Δf4 + 3Δf5 = 0 . If the inner 5-region lies inside 
the cycle C, then Δf5 = 0 , and so the Grinberg equation reduces to 2Δf4 = 0  and so we get 
that Δf4 = 0 .

But that means that f4 − f4 ' = 0 but this is impossible since f4 + f4 ' = 5 .

(b). Since both 5-regions lie outside C, it follows that Δf5 = −2  and so, Δf4 = 3 . Now solving 
the equations f4 + f4 ' = 5 and f4 − f4 ' = 3 simultaneously, we get f4 = 4 and f4 ' = 1.  So there 
are four 4-regions outside C and one 4-region inside C.

(c). Do it.



4. Show that the inner 5-region of the graph below lies inside every Hamiltonian cycle.

Solution: 
There are ten 4-regions and two 5-regions. So just as in the previous problem we get that 
2Δf4 + 3Δf5 = 0 and argue essentially the same as before only this time it follows that the inner 
5-region lies outside any given Hamiltonian cycle C because there are an even number of 4-
regions.

5. Suppose that G is a plane graph that has a Hamiltonian cycle C.
Suppose too, that G has
8 regions bounded by 4-cycles, 
3 regions bounded by 3-cycles,  (two are inside C, and one is outside C)
1 region bounded by a 5-cycle,  and the exterior region is bounded by a 10-cycle.

Use Grinberg’s Theorem to determine how many of the regions bounded by 
4-cycles lie inside C. Explain your work carefully.

Solution: 
The Grinberg equation is Δf3 + 2Δf4 + 3Δf5 = 8 . Since two of the 3-regions are in C, and one 

is outside C, we have Δf3 = 2 −1 = 1 . So the Grinberg equation reduces to 2Δf4 + 3Δf5 = 7 . 

Since there is just one 5-region, Δf5 = 1 or  Δf5 = −1 . So either Δf4 = 2 or  Δf4 = 5.  However, 

since the number of 4-regions is even, it must be that Δf4 = 2 .

So we have f4 + f4 ' = 8 and f4 − f4 ' = 2 . Solving these simultaneously, we get that f4 = 5  and 

so five of the 4-regions lie inside C.



6. (a). Show that there is no Hamiltonian path from a to b in the graph below.
(b). Show that there is no Hamiltonian cycle in the graph below with vertex b removed.

    
Solution:
(a). Form a new graph G*  by adding the edge ab to the given graph.
Then there is a Hamiltonian cycle in G* that contains ab if and only if there is a Hamiltonian 
a-b path in the original graph.

So it is enough to show that G* does not have a Hamiltonian cycle that contains the edge ab.
Suppose then that G* does have a Hamiltonian cycle C that contains the edge ab.
G* is a plane graph that has one 3-region, one 4-region, and eleven 5-regions. The Grinberg 
equation for G* is Δf3 + 2Δf4 + 3Δf5 = 0 . But since the 4-region and 3-region both contain the 

edge ab in their respective boundary, it follows that Δf4 = 1 and Δf3 = −1  or 

Δf4 = −1 and Δf3 = 1 . In the first case, we get 3Δf5 = −1 and in the second case we get 

3Δf5 = 1 . Both of these are impossible, and we conclude that no such cycle C can exist.

(b). Call the graph with the vertex b removed G* . Then G*  has eight 5-regions and one 
9-region. Thus the Grinberg equation is 3Δf5 + 7Δf9 = 0. But Δf9 = ±1 , and so we get 

3Δf5 = ±7 , which is impossible.

Note that a similar argument shows that the removal of any vertex from this graph results in a 
non-Hamiltonian graph.



7. For the graph below, show that there is no Hamiltonian cycle that contains both of the edges
e and f.

Solution: Denote the graph above by G. We could argue much as in the previous problems, but 
here we will demonstrate another approach. This time form a new graph from G by 
subdividing the edge e and also subdividing the edge f. Call the resulting graph G* .
Now G has a Hamiltonian cycle containing e and f if and only if G*  has a Hamiltonian cycle.

However G*has one 4-region and six 5-regions. So the Grinberg equation is 2Δf4 + 3Δf5 = 0 , 
which reduces to 3Δf5 = ±2  (since Δf4 = ±1), and this is impossible.

8. Show that every tournament has a spanning directed path. You may argue by induction or use 
any result that we have discussed so far (other than this result, itself!).

Solution: 
We will argue by induction noting first that the result is true for the case n = 1. Suppose that 
for some integer n > 1, the result holds for all tournaments on fewer than n vertices. Now let T 
be any tournament on n vertices. 
We will be finished if we can show that T must have a spanning directed path.

Let v be any vertex of T and let A denote the in-neighborhood of v and let B denote the out-
neighborhood of v. Then each of A and B  has fewer than n vertices (in fact one of A or B 
could be empty). We will assume here that A and B are both non-empty, but it is a simple 
manner to argue the case where either is empty. Let P be a directed spanning path of A with 
initial vertex a and terminal vertex x. Let Q be a directed spanning path of B with initial vertex 
y and terminal vertex b. Then if we follow P from a to x, take the arc av and then the arc vy 
and then follow Q from y to b we have produced a spanning directed path of T from a to b.
[In the case that A is empty, just begin at v and in the case that B is empty just end at v.]


