Math 575
Problem Set 10

An orientation \tilde{G} of a graph G is an assignment of an orientation (direction) to each edge. We call the directed edges arcs. So if the edge vu is oriented from v to u, we refer to the resulting directed edge as the arc (v, u). We denote the arcs of \tilde{G} by $A(\tilde{G})$. We sometimes refer to v as the tail of the arc and u as the head of the arc.

Any orientation of a complete graph is referred to as a tournament.

An acyclic orientation of a graph is an orientation that does not contain any oriented cycles. A directed path (resp. directed cycle) is a path (resp. cycle) in which all the edges have the same orientation.

The indegree $\text{deg}^- (v)$ of a vertex v in an oriented graph \tilde{G} is the number of arcs that are oriented towards v; i.e., the number of arcs of the form (u, v).

The outdegree $\text{deg}^+ (v)$ of a vertex v in an oriented graph \tilde{G} is the number of arcs that are oriented from v; i.e., the number of arcs of the form (v, u).

1. A vertex v of a directed graph is called a king if for every vertex u of the graph, there is a directed path of length 1 or 2 from v to u. So thinking of a tournament as a ‘real tournament’ where the arc (v, u) indicates that v beat u in the competition, if v is a king and u is any other vertex, then either v beat u or v beat someone who beat u.

Show that every tournament contains a king.

Hint: Choose a vertex of the tournament that has maximum outdegree.

Solution: Suppose that v is a vertex of maximum out-degree in the tournament T. Then let A denote the out-neighborhood of v and let B denote the in-neighborhood of v.

We claim that v is a king in T. To verify this claim, it is enough to show that there is a directed path of length 2 from v to each vertex in its in-neighborhood.

So now suppose that u is any vertex in the in-neighborhood of v. If there is a vertex w in A such that (w, u) is an arc of T, then vuw is a directed path of length 2 from v to u. On the other hand, if there is no such vertex in A, then it must be that u dominates every vertex of A. Thus since u dominates everything that v does and u also dominates v, the outdegree of u is greater than that of v - but this contradicts the choice of v. Thus the claim is verified and the result holds.
2. Suppose that G is a graph and \tilde{G} an acyclic orientation of G. Let k denote the number of vertices in a longest directed path in \tilde{G}. Show that G is k-colorable.

Hint: Color a vertex v with the number of vertices in a longest directed path that begins at v. Show that this is a good k-coloring.

Solution. Let v and u be adjacent vertices of G, and suppose that the edge vu is oriented as the arc (v, u). Then if the number of vertices in a longest path that originates at u is l, the number of vertices in a longest path that originates at v will be at least $l + 1$. Thus v and u must have different colors and the coloring is a good one.

3. Show that if G is a k-chromatic graph, then there exists an acyclic orientation \tilde{G} of G in which the longest directed path contains exactly k vertices.

Hint: Consider a coloring of G with the colors 1, 2, ..., k. Now devise an orientation based upon these colors.

Solution. Simply orient each edge from the vertex with lower label the vertex with higher label. We know that there is an acyclic path in this orientation that contains at least k vertices. Since the magnitudes of the vertex colors increase at we traverse a path, the path cannot contain more than k vertices.