Math 575 Practice Exam 3.

1. (a). The Ramsey number \(r(n, m) \) is the smallest integer \(N \) such that every graph \(G \) on \(N \) vertices contains a \(n \)-vertex complete subgraph or a \(m \)-vertex independent set.

Solution: The smallest integer \(N \) such that every graph \(G \) on \(N \) vertices contains a \(n \)-vertex complete subgraph or a \(m \)-vertex independent set is \(r(n, m) \).

(b). If \(G \) is a graph on 36 vertices with \(\chi(G) = 5 \), then \(G \) must contain an independent set of size at least ________.

Solution: 8

(c). Draw the Grötsch graph. Solution: See your notes.

2. Suppose that \(G \) is a graph that has no induced \(K_{1,4} \) and \(\omega(G) = 4 \). Find the smallest number \(N \) such that you can verify that \(\Delta(G) \leq N \). Justify your answer.

Solution: Let \(N = 17 \). Suppose that it is not true that \(\Delta(G) \leq 17 \). Then there is a vertex \(v \) in \(G \) that has degree at least 18. Let \(H \) denote the subgraph induced by the neighborhood, \(N(v) \), of the vertex \(v \).

Then since \(r(4, 4) = 18 \), either there is an independent set of 4 vertices in \(H \) which together with \(v \) would give an induced \(K_{1,4} \) in \(G \), or there is a complete set of 4 vertices in \(H \) which together with \(v \) would give a \(K_5 \) in \(G \) – which is impossible since \(\omega(G) = 4 \).

3. Use the Chromatic Lower Bound to determine an example that shows that \(r(C_5, P_6) \geq 11 \). \textbf{Hint:} \(\chi(C_5) = 3 \). Verify that your example works.

Solution: Let \(G \) be the graph consisting of two disjoint copies of \(K_5 \). Then \(P_6 \) is not a subgraph of \(G \), and since the complement of \(G \) is \(K_{5,5} \), a bipartite graph, the complement cannot contain \(C_5 \) whose chromatic number is 3.

4. \(P_G(t) = t^5 - 5t^4 + 10t^3 - 3t^2 + 3t \) is the chromatic polynomial of some graph \(G \).

(a). What is the missing coefficient of \(t^2 \)?

Solution: Since \(P_G(1) = 0 \), the missing coefficient is 9.

(b). How many edges does \(G \) have?

Solution: 5

(c). Show that \(G \) is a bipartite graph.

Solution: \(P_G(2) = 2 > 0 \) and so it is possible to color \(G \) with two colors.
5. (a). Find the chromatic polynomial of the graph G below and use it to determine the number of ways to color this graph with 3 colors.

Solution:

$$P_G(t) = \frac{P_{C_5}(t)P_{C_4}(t)(t-2)}{t(t-1)}.$$

$$P_G(3) = \frac{30 \times 18}{3 \times 2} = 90.$$ So there are 90 ways to color G with 3 colors.

(b). How many ways are there to color the 5-wheel W_5 (shown below) with 4 colors?

Solution:

$$4 \times P_{C_5}(3) = 4 \times 30 = 120.$$

(c). For the graph below, list an ordering of the vertices so that a greedy coloring with respect to that ordering will require 4 colors.

Solution: $b \ c \ e \ d \ f \ a$ (among others).

6. **Prove:** every red-blue coloring of the edges of K_{14} contains two disjoint red 4-cycles or two disjoint blue 4-cycles.

Solution: Suppose that we consider any red-blue coloring of the edges of K_{14}. Then since $r(C_4, C_4) = 6$, there must be a monochromatic 4-cycle in this coloring. WLOG we will suppose that it is a red C_4. Now consider the remaining 10 vertices of K_{14}. Again, there must be a monochromatic C_4 in the coloring of the edges among these 10 vertices. If it is a red C_4, then we are finished. So, suppose that it is a blue C_4. Now there are 6 remaining vertices not part of either of the monochromatic triangles we have already constructed. There is a monochromatic C_4 in the coloring of the edges of these 6-vertices which together with the appropriate one of the previous two C_4's gives us the desired graph.
7. Show that \(r(P_4, P_4) = 5 \).

Solution: First we show that \(r(P_4, P_4, K_5) \leq 5 \). Consider an arbitrary red-blue coloring of the edges of \(K_5 \). We must show that there is either a red \(P_4 \) or a blue \(P_4 \). Now suppose that \(v \) is a vertex in \(K_5 \), then without loss of generality, \(v \) is incident with at least two red edges – say \(vu \) and \(vw \) are red. Let \(x \) and \(y \) be the remaining two vertices. Then either one of \(xu, xw, yu, yw \) is red and we have a red \(P_4 \) or they are all blue and we have a blue \(P_4 \).

The graph \(K_3 \cup K_1 \) shows \(r(P_4, C_4) > 4 \).

8. Prove: If \(G \) is connected but not regular, then \(\chi(G) \leq \Delta(G) \).

Solution: We may assume that \(G \) has at least two vertices. Since \(G \) is not regular, there is a vertex \(w \) such that \(\deg(w) < \Delta \). Now since \(G \) is connected on at least two vertices, \(G \) must have a non cut-vertex, \(v_1 \neq w \) (why?). Now let \(G_1 = G - v_1 \). Then \(G_1 \) is connected and if it is not just \(\{w\} \), then it must contain a non cut-vertex \(v_2 \neq w \). Let \(G_2 = G_1 - v_2 \) and continue this way to generate a sequence of vertices \(v_1, v_2, \ldots, v_k \) such that for each \(1 \leq k \leq n-1 \), each \(v_k \) is adjacent to some vertex to the right of it in the sequence. So if we now color the vertices of \(G \) according to this permutation we never need to use more than \(\Delta \) colors. For suppose that we have colored the vertices \(v_1, v_2, \ldots, v_r \). Then since \(K = \{v_{r+1}, v_{r+2}, \ldots, w\} \) is connected, \(v_{r+1} \) must be adjacent to at least one vertex in \(K \) and hence there are at most \(\Delta - 1 \) colors used for the neighbors of \(v_{r+1} \) that have thus far been colored. So there must be a color free for \(v_{r+1} \). Finally, when we get to \(w \), we know that there will be a color available for \(w \) because it is adjacent to fewer than \(\Delta \) vertices of \(G \).

9. Suppose that the numbers \(\{1, 2, 3, 4, \ldots, 16\} \) are colored red, blue, and green and that we color the edges of the complete graph on \(K = \{0, 1, 2, \ldots, 21\} \) as in the proof of Schur’s Theorem.

Suppose too that the numbers 4, 11, and 19 form the vertices of a blue triangle in this coloring of the edges of \(K \). Determine a blue equation of the form \(a + b = c \).

Solution: \(7 + 8 = 15 \) is a blue equation.