The Chromatic Polynomial

The chromatic polynomial $P_G(t)$ for a graph G is the number of ways to properly color (i.e., no two adjacent vertices have the same color) the vertices of G with at most t colors. For a specific value of t, this is a number, however (as shown below) for a variable t, $P_G(t)$ is a polynomial in t (and hence its name).

It is easy to compute $P_G(t)$ for certain special classes of graphs.

Theorem. (a) $P_{K_n}(t) = t(t-1)(t-2)\cdots(t-n+1)$

(b) $P_{K_1}(t) = t^n$

(c) $P_T(t) = t(t-1)^{n-1}$ for any tree T on n vertices.

Two recursion formulas

Theorem. If a and b are non-adjacent vertices of the graph G, then $P_G(t) = P_{G+ab}(t) + P_{G,ab}(t)$.

Proof. $P_G(t)$ is the number of ways to color $V(G)$ using at most t colors.

$= \text{number of ways with } a, b \text{ the same color} + \text{number of ways with } a, b \text{ different colors}$.

But, $P_{G+ab}(t)$ is the number of ways to color $V(G)$ with a, b different colors.

And $P_{G,ab}(t)$ is the number of ways to color $V(G)$ with a, b the same color.

Corollary. For any graph G, $P_G(t)$ is a polynomial in the variable t.

Proof. Repeated application of the previous theorem will result in an expression for $P_G(t)$ as a sum of the form $P_G(t) = \sum_{i=1}^{n} a_i P_{n_i}(t)$ where the a_i's may be 0. Since $P_{n_i}(t)$ is a polynomial in t, it follows that $P_G(t)$ is a polynomial in t.

Example: Here we use the notation of brackets around a graph to represent the chromatic polynomial of the graph.

$P_{C_4}(t) =$

\[
\left[\begin{array}{c}
\begin{array{c}
Theorem. If a and b are adjacent vertices of the graph G, then $P_G(t) = P_{G-ab}(t) - P_{G,ab}(t)$.

Proof. Apply the previous theorem to the graph $H = G - ab$. Then since $H_{ab} = G_{ab}$ and $H = G - ab$, we get, $P_{G-ab}(t) = P_H(t) = P_{H+ab}(t) + P_{H,ab}(t) = P_G(t) + P_{G,ab}(t)$. Thus, $P_{G-ab}(t) = P_G(t) + P_{G,ab}(t) = P_G(t) - P_{G,ab}(t)$.

Theorem. Suppose that G has components A_1, A_2, \ldots, A_k. Then $P_G(t) = P_{A_1}(t)P_{A_2}(t)\cdots P_{A_k}(t)$.

Proof. This is obvious.

Theorem. For any graph G on n vertices, $P_G(t)$ is a polynomial in t having degree n, and also the following statements hold.

(a). It’s leading term is t^n.

(b). The constant term of $P_G(t)$ is 0.

(c). The coefficient of t^{n-1} is m – the number of edges of G.

(d). The coefficients of $P_G(t)$ alternate in sign.

(e). If the coefficient of t is not zero, then G is connected.

(f). If G has any edges, then the sum of the coefficients of $P_G(t)$ is 0.

Proof.

Parts (a) – (d) follow by a common induction argument on m, the number of edges of G.

(e). If G has more than one component, then it would follow from (b) and the previous theorem that the constant term of $P_G(t)$ would be 0.

(f). If G has any edges, then $V(G)$ cannot be properly colored with one color and so

$$P_G(1) = 0.$$ However, $P_G(1)$ is equal to the sum of the coefficients of $P_G(t)$.

Theorem. For any cycle C_n, $P_{C_n}(t) = (t-1)^n + (-1)^n(t-1)$.

Proof. This is a simple induction using the second recursion formula,

$$P_G(t) = P_{G-ab}(t) - P_{G,ab}(t).$$

Theorem. Suppose that S is a complete subset of k vertices of the connected graph G. Suppose that $G - S$ is disconnected with components A and B.

Let H be the subgraph induced by $A \cup S$ and let M be the subgraph induced by $B \cup S$.

Then $P_G(t) = \frac{P_H(t)P_M(t)}{t(t-1)\cdots(t-k+1)}$.

Proof. There are $P_H(t)$ ways to color the vertices of H with at most t colors and then after that $P_M(t)$ ways to color the vertices of M [and hence complete the coloring of $V(G)$] using the same t colors. So the total number of ways to color the vertices of G using a set of t colors is $P_G(t) = \frac{P_H(t)P_M(t)}{t(t-1)\cdots(t-k+1)}$. □

The special case of this where S consists of a single vertex makes it easy to reduce the computation of the chromatic polynomial for a graph having a cut-vertex.
Corollary. Suppose that \(G \) is a connected graph that has a cut vertex \(v \) and suppose that \(G - v \) has \(r \) components \(A_1, A_2, \ldots, A_r \). For each \(i = 1, 2, \ldots, r \) let \(H_i \) denote the subgraph induced by \(A_i \cup \{v\} \). Then \(P_G(t) = \frac{P_{A_1}(t)P_{A_2}(t)\cdots P_{A_r}(t)}{t^{r-1}} \).

Proof. There are \(P_{H_1}(t) \) ways to properly color \(H_1 \) and then \(\frac{P_{H_i}(t)}{t} \) ways to properly color each of the \(H_i \)'s with \(i > 1 \).

Note that if \(a < \chi(G) \), then \(P(a) = 0 \).

Some curiosities about the Chromatic Polynomials.

1. Tutte and some of his students observed that for any triangulated planar graph \(G \), \(P_G(t) \) has a root close to \(\frac{3+\sqrt{5}}{2} \).

2. Let \(\phi = \frac{1+\sqrt{5}}{2} \). Then for any triangulated planar graph \(G \), \(P_G(\phi \sqrt{5}) > 0 \).

3. Let \(A \) be the vertex-adjacency matrix of the graph \(G \) with \(V(G) = \{v_1, v_2, \ldots, v_n\} \), i.e., \(A \) is the \(n \times n \) matrix with \(a_{ij} = \begin{cases} 1 & \text{if } v_i \text{ and } v_j \text{ are adjacent} \\ 0 & \text{otherwise} \end{cases} \).

Theorem (Wilf). If \(\lambda_{\text{max}} \) denotes the largest eigenvalue of \(A \), then \(\chi(G) \leq 1 + \lambda_{\text{max}} \).

Exercises:

1. Let \(G \) be the graph that consists of an \(n \)-cycle with an additional vertex adjacent to all the vertices of the cycle [such a graph is called an \(n \)-wheel [or just wheel if \(n \) is understood], and is denoted by \(W_n \). Determine the chromatic polynomial for \(W_n \).

Solution: \(P_{W_n}(t) = tP_{C_n}(t-1) = t(t-2)^n + (-1)^n t(t-2) \).

2. Let \(P \) be the chromatic number of an even cycle, what is the value of \(P(2) \)?

Solution: \(P(2) = 2 \) since there are 2 ways to color an even cycle with two colors.

3. In how many ways can the vertices of an 8-cycle be properly colored using the colors red, blue, and green?

Solution: Since \(P_{C_8}(t) = (t-1)^8 + (t-1) \), there are \(P_{C_8}(3) = 2^8 + 2 = 66 \) ways.
4. What is the chromatic polynomial for the graphs below?

Solution: \[P(t) = \frac{P_{C_1}(t)P_{C_4}(t)}{t(t-1)} = \frac{(t-1)^{10} + (t-1)(t-1)^4 + (t-1)}{t(t-1)}. \]

Solution: \[P(t) = (t-1)^{10} + (t-1)^7. \]

Solution: \[P_G(t) = t(t-1)(t-2)^3(t-3). \]

5. Prove: If the chromatic polynomial of \(G \) is \(P_G(t) = t(t-1)^{n-1} \), then \(G \) is a tree on \(n \) vertices.

Solution: Since \(P_G(t) = t(t-1)^{n-1} = t^n - (n-1)t^{n-1} + \cdots + 1 \), we can see that \(G \) is a connected graph on \(n \) vertices that has \(n-1 \) edges and hence must be a tree.

6. How many ways are there to color a cycle on 6 vertices using red, blue, and green if each color must be used at least once?

Solution: The number of ways to color a cycle on 6 vertices using red, blue, and green if each color must be used at least once is 60.

7. Explain why you would have a proof of the 4-color theorem if you could show that \(P_G(4) > 0 \) for any planar graph \(G \).

Solution: If \(P_G(4) > 0 \), then there is at least one way to properly color there vertices of \(G \) with 4 colors.

8. Is \(P(t) = t^4 - 3t^3 + 3t^2 \) the chromatic polynomial of some graph \(G \)?

Solution: No.