1. The *independence number*, α, is the cardinality of a largest independent set of vertices of G.

Show that if G is any graph, then

(a) $\chi(G) \leq n - \alpha(G) + 1$
(b) $\chi(G)\alpha(G) \geq n$

Hints:

(a). Consider a maximum independent set A.

(b). Consider that a coloring of G with $k = \chi(G)$ colors yields a partition of $V(G)$ into k independent sets $\{V_1, V_2, V_3, \ldots, V_k\}$.

Solution: (a). Choose a maximum independent set S and color all its vertices with the same color, and then color all the remaining $n - \alpha(G)$ vertices a different color and we get a $n - \alpha(G) + 1$ coloring of G.

(b). Let $\chi(G) = k$ and suppose that $\{S_1, S_2, \ldots, S_k\}$ is a partition of the vertex set of G into k independent sets.

Thus $|S_i| \leq \alpha$ for each i and so, $n = \sum_{i=1}^{k} |S_i| \leq \sum_{i=1}^{k} \alpha = k\alpha$, and hence $k \geq \frac{n}{\alpha}$.

2. Suppose that G has chromatic number k and for some vertices v and u, $N(v) \subseteq N(u)$, then show that G is not k-critical.

Solution: Suppose that $G - v$ could be colored with $k - 1$ colors. Then take that coloring and assign the vertex u the same color as that given to v, and we get a $k - 1$ coloring of G -- contrary to $\chi(G) = k$.

3. (a). Show that the Grotsch graph has chromatic number 4.

(b). In general, why must the graph G_k, as constructed in class, be triangle free and have chromatic number k?

(c). How many vertices are in the graph G_5?

4. Show that if G is k-chromatic, then for any tree T on k vertices, G has a subgraph isomorphic to T.

Solution: Since G is k-chromatic, it must contain a subgraph H that is k-critical. But then every vertex of H has degree at least $k - 1$ and so H must contain every tree on k vertices.

5. A *greedy coloring* of a graph G is obtained by taking a permutation of the vertices of G and then coloring each vertex in turn with one of the numbers 1,2,\ldots,n assigning each vertex in turn the smallest color not used by any of its neighbors.

(a). Find a tree and a greedy coloring of the tree that requires 5 colors.
Solution: The tree below requires 4 colors if the vertices are colored in alphabetical order. By appropriately connecting two copies of this tree, you can get a tree and a greedy coloring that requires 5 colors.

![Tree Diagram]

(b). What can you say about the chromatic number of a tree on \(n \geq 2 \) vertices?

Solution: It is 2.

6. A *digraph* \(\tilde{G} \) (sometimes called an *oriented graph*) is an orientation of a simple graph \(G \). So each edge \(e = ab \) becomes either \((a, b) \) [if the edge is oriented from \(a \) towards \(b \)] or \((b, a) \) [if the edge is oriented from \(b \) towards \(a \)].

The set of ordered pairs that represent the oriented edges is called the set of *arcs* of \(\tilde{G} \) and is denoted by \(A(\tilde{G}) \).

A *tournament* is an oriented complete graph.

An *oriented path* in \(\tilde{G} \) is a sequence \(v_1, v_2, v_3, \ldots, v_m \) in which \((v_i, v_j) \) is an arc of \(\tilde{G} \) for each \(i = 1, 2, \ldots, m-1 \). If \((v_m, v_1) \) is also an arc, then we say that \(v_1, v_2, v_3, \ldots, v_m \) is an oriented cycle.

\(\tilde{G} \) is *acyclic* if it has no oriented cycles.

Prove: Every tournament contains an oriented spanning path; i.e., an oriented path that contains all the vertices of \(\tilde{G} \).

Hint: Argue by induction. Keep in mind that if \(\tilde{G} \) is a tournament, then so is \(\tilde{G} - v \) for any vertex \(v \).

7. How many distinct tournaments are there on \(n \) vertices?

Hint: You must make a decision about each edge in \(K_n \).
8. Let G be a graph and let \tilde{G} be an acyclic orientation of G. Suppose that the longest oriented path in G has length k, (i.e., contains $k + 1$ vertices). Then show that \tilde{G} is k-colorable.

Hint: Color a vertex v with r where r is the length of a longest oriented path that starts at v.

9. Let $\chi(G) = k$. Show that every acyclic orientation of G contains an oriented path on $k + 1$ vertices. *Note that this was not the statement on the handout in class.*

Hint: Consider a partition of G into k independent sets.